
Quantum Computing

Ace Chun

July 25, 2022

Contents

1 Quantum Concepts 3
1.1 Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 EPR Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Bell’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 No-cloning Theorem . . . . . . . . . . . . . . . . . . . . . . . 4

2 Qubits 6
2.1 Statevectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Dirac (Bra-Ket) Notation . . . . . . . . . . . . . . . . . . . . 7
2.3 Tensor Product . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Bloch Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Single-Qubit Interactions and Gates 10
3.1 Fundamental gates . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Identity Gate . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 X Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.3 Z Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.4 H Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Standard Gates . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.1 Y gate . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 S Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.3 T Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Rotation Gates . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1



3.3.1 Rx Gate . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.2 Ry Gate . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.3 Rz Gate . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Entanglement and Multi-Qubit Gates 13
4.1 Qubit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3.1 CNOT Gate . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.2 SWAP Gate . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.3 CCNOT/Toffoli Gate . . . . . . . . . . . . . . . . . . . 14
4.3.4 CZ Gate . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.5 0-Controlled Gates . . . . . . . . . . . . . . . . . . . . 15

4.4 Disentanglement . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 Bell States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Circuits 16
5.1 Single Qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Multi Qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Quantum Interference 17
6.1 Hadamard Gate . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Thought Experiments 17
7.1 CHSH Game . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.2 GHZ Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8 Protocols 20
8.1 Superdense Coding . . . . . . . . . . . . . . . . . . . . . . . . 20
8.2 Quantum Communication without Entanglement . . . . . . . 21

8.2.1 Quantum Key Distribution . . . . . . . . . . . . . . . . 21
8.2.2 Direct Communication . . . . . . . . . . . . . . . . . . 22

9 Algorithms 22
9.1 Deutsch-Jozsa Algorithm . . . . . . . . . . . . . . . . . . . . . 22

9.1.1 2 input qubits . . . . . . . . . . . . . . . . . . . . . . . 23
9.1.2 Generalized circuit . . . . . . . . . . . . . . . . . . . . 24

9.2 Grover’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 24

2



9.2.1 Explanation at length . . . . . . . . . . . . . . . . . . 25
9.2.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . 28
9.2.3 Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

9.3 Simon’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 31
9.4 Quantum Fourier Transform . . . . . . . . . . . . . . . . . . . 33

9.4.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.4.2 Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

9.5 Shor’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 35
9.5.1 Modular Exponentiation . . . . . . . . . . . . . . . . . 36
9.5.2 Periodicity of Modular Exponentiation . . . . . . . . . 38
9.5.3 Aggregating Factors . . . . . . . . . . . . . . . . . . . 41
9.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.5.5 Relevance to Factorization . . . . . . . . . . . . . . . . 43

9.6 Bernstein-Vazirani Algorithm . . . . . . . . . . . . . . . . . . 45
9.7 Quantum Clustering Algorithm . . . . . . . . . . . . . . . . . 48

9.7.1 K-means Algorithm . . . . . . . . . . . . . . . . . . . . 48
9.7.2 Q-means Algorithm . . . . . . . . . . . . . . . . . . . . 48

10 Error Correction 49
10.1 Bit-flip Error Correction . . . . . . . . . . . . . . . . . . . . . 49
10.2 Steane’s Error Correction Code . . . . . . . . . . . . . . . . . 50

11 Other 53
11.1 Constructing the H gate . . . . . . . . . . . . . . . . . . . . . 53
11.2 W States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1 Quantum Concepts

1.1 Locality

The concept of locality comes from the field theories of classical mechanics;
the principle of locality states that an object can only be influenced directly
by its own surroundings (or, there cannot be instantaneous action at a dis-
tance). For one point to have an influence on a point at some other location,
some space between the two points must be a medium for the action; a wave
or a particle must physically travel through space between the two points
to carry the influence. In the quantum space, the argument is that: should
locality exist, quantum states from distances greater than the speed of light
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should not be able to be instantaneously affected by each other. Based on
conducted experiences, it seems that this argument is not true, since quan-
tum states can affect (be entangled with) each other at distances. Thus,
quantum mechanics must be nonlocal for theory to match up with reality.

1.2 EPR Paradox

In 1935, Einstein, Podolsky, and Rosen published a paper that contained
what is now know as the EPR paradox, which suggests that there is a paradox
hiding in the predictions for measurement outcomes of entangled quantum
objects. Given an experiment with which the outcome is known before the
experiment takes place, there’s an ‘elemtn of reality’ associated with the ex-
periment that determines the outcome of the measurement. These ‘elements
of reality’ should be local; they should belong to a coordinate in spacetime
which cannot be changed by something that moves faster than the speed of
light. A choice of measurement done on a particle should not lead to two
different quantum states for another particle that is far away.

1.3 Bell’s theorem

In 1964, Bell created a rigorous test, known as Bell’s inequality or Bell’s
theorem. It states that local theories about quantum mechanics will have
a bound on correlations between measurements of the z-component of spin
for entangled pairs of spin-half particles, or fermions. Since nonlocal theories
can violate this bound, the question of local versus nonlocal can be solved if
the inequality can be broken.

1.4 No-cloning Theorem

The no-cloning theorem states that any quantum state |Ψ〉 cannot be dupli-
cated with a single unitary gate. In other words,

U(|Ψ〉 ⊗ |0〉)⇒ |Ψ〉 ⊗ |Ψ〉

cannot exist. The simplest proof of this would be to check if it works for the
most basic of situations: for example, let’s try duplicating the states |0〉, |1〉
and |+〉. Suppose that such a gate does exist, and that it can successfully
duplicate a specific quantum state. Then, it should be able to clone the basic
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states. Let’s assume that U |0〉 ⊗ |0〉 = |0〉 ⊗ |0〉, and U |1〉 ⊗ |0〉 = |1〉 ⊗ |1〉.
Or:

U


0
0
1
0

⇒


0
0
0
1



U


1
0
0
0

⇒


1
0
0
0


By linearity, this should extend to the |+〉 state:

U |+〉 ⊗ |0〉 ⇒ U
1√
2

(|0〉+ |1〉)⊗ |0〉

However, given the previously assumed states, we end up with a result:

1√
2

(U(|0〉 ⊗ |0〉) + U(|1〉 ⊗ |1〉))

1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

which is not mathematically equivalent to what we should have received as
an output:

1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉+ |1〉)

Thus, by contradiction, such a gate U cannot exist because it cannot cor-
rectly duplicate a basic state.
We can try another variation of this problem, considering global phase. Sup-
pose that there is a gate, V, which can perform the following:

V (|Ψ〉 ⊗ |0〉)⇒ eiα|Ψ〉 ⊗ |Ψ〉

Again, we can try to assume that

V |0〉 ⊗ |0〉 = |00〉
V |1〉 ⊗ |0〉 = −|11〉
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We can, again, try to duplicate |+〉 with these assumptions.

V |+〉 ⊗ |0〉 =
1√
2
V (|0〉+ |1〉)⊗ |0〉

=
1√
2

(V |00〉+ V |10〉)

=
1√
2

(|00〉 − |11〉)

Again, we run into the same problem; the above result, obtained through
algebraic laws, is not mathematically equivalent to our expected answer of
|+ +〉, or

1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉+ |1〉)

Despite the consideration to global phase, such a unitary gate fails to exist.

2 Qubits

A qubit is the quantum analogue of the classical binary bit. Just like classical
computers, quantum computers operate by way of manipulating these units
of information through quantum gates. However, most of the similarities
stop there; a quantum computer, for example, does not have irreversible
operations (aside from measurement), as opposed to a classical computer,
which has operations like SET and CLEAR (which are not time-reversible).
A quantum computer’s operations are always reversible because they consist
of unitary operators.

2.1 Statevectors

The state of a particular quantum computer is represented with a statevec-
tor. A statevector is represented as a single column vector, describing the
probability that the state would collapse into any of its positions. For exam-
ple,

|Ψ〉 =


0
0
1
0
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indicates that |Ψ〉 has a 100% chance of being in the third state. There are
two definitive states that a measured qubit can take: the 0 state and the 1
state.

|0〉 =

[
1
0

]
|1〉 =

[
1
0

]
When a qubit in superposition is measured, it collapses into either one of the
aforementioned states. Since the two states form an orthonormal basis, it is
possible to form any state with a combination of them. Thus, any qubit can
be expressed in the forms:

|Ψ〉 = a|0〉+ b|0〉 =

[
a
b

]
When the function collapses, the probabilities that the qubit will fall into
either the 0 or the 1 is its coefficient squared. Thus, this presents the slight
caveat that a2 + b2 = 1, since probabilities fall between 0 and 1 and must
always add up to 1. This is known as normalization.

2.2 Dirac (Bra-Ket) Notation

Introduced by Paul Dirac, Bra-Ket notation is a specific and convenient
way of expressing vectors in quantum mechanics. A Ket (|Ψ〉) represents a
quantum state, a statevector consisting of complex numbers. A Ket is always
matched with a Bra; they are each other’s conjugate transpose. For example,
the ket

|a〉 =

2− 3i
6 + 4i
3− i


matches with the bra

〈a| =
[
2 + 3i 6− 4i 3 + i

]
Inner multiplication with bras and kets are notated with

〈a|b〉

where the product is the dot product of the two vectors. This inner product
is contrasted with the outer product of a bra and a ket:

|b〉〈a|
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which returns an N ×N matrix as a result.

|b〉〈a| =


b0a0 b0a1 · · · b0an−1
b1a0 b1a1 · · · b1an−1

...
...

. . .
...

bn−1a0 bn−1a1 · · · bn−1an−1


In general, kets in quantum computing are simply used to express the states
of a system.

2.3 Tensor Product

The tensor product (
⊗

) is an operation between two matrices or vectors
that outputs a single object as the result. When two vectors are tensored,
the second vector of the two is scalar-multiplied with each of the elements in
the first vector. Generally:

|x〉 ⊗ |y〉 =

[
x0
x1

]
⊗
[
y0
y1

]

=

x0 ·
[
y0
y1

]
x1 ·

[
y0
y1

]


Tensor products are associative (|x〉 ⊗ (|y〉 ⊗ |z〉) = (|x〉 ⊗ |y〉)⊗ |z〉) and are
distributive over a sum.

2.4 Bloch Sphere

A Bloch sphere is a visual representation of the states of a qubit. By con-
vention, the |0〉 state is at the very top of the represented circle, while |1〉 is
at the very bottom. A vector points outwards to its position on the sphere,
which represents the state of the qubit.
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We can define a statevector based on the angles θ and ϕ:

|ψ〉 =

[
cos( θ

2
)

eiϕ sin( θ
2
)

]

2.5 Amplitude

As stated before, qubits must always be unit vectors; the amplitudes, or the
squares of the coefficients of the |0〉 and |1〉 states, must add up to 1. This
means that amplitudes can be any number a|a ∈ C.
Certain properties intrinsic to quantum computing prevent people from di-
rectly using the amplitudes of states to hold information. When the qubit
is measured, the function collapses, and we are left with either the |0〉 or |1〉
state, with the information stored inside of its amplitudes destroyed in the
process.

2.6 Phase

In squaring the amplitudes when measuring a qubit, one might find that the
signs on the amplitudes are useless. However, the signs of the amplitudes
are crucial when considering the state of the qubit prior to measurement; the
difference in signs is called phase. There are two types of phase: relative and
global. For example, take two qubits:

|x〉 =
1√
2
|0〉+

1√
2
|1〉

|y〉 = − 1√
2
|0〉 − 1√

2
|1〉

9



Notice how we can factor out −1 from the expression of |y〉. Thus, |y〉 has
a global phase of −1, and it is functionally equivalent to |x〉. However, in
cases where a negative factor cannot be singled out from the expression:

|x〉 =
1√
2
|0〉+

1√
2
|1〉

|y〉 =
1√
2
|0〉 − 1√

2
|1〉

|x〉 and |y〉 cannot be reduced to one another, and thus have a relative phase
between them. These are two different states. Global phase should be a
variant of the form eiϕ, where ϕ is any angle. In summary, global phases
do not matter in quantum computing, while relative phases do due to their
effects on the qubit’s state prior to measurement.

3 Single-Qubit Interactions and Gates

In quantum computing, qubits are mutable; the states of the qubits them-
selves are altered. Single-Qubit, or unary gates act on the qubit and perform
manipulations akin to rotating or reflecting a vector about a specific axis on
the Bloch sphere. In quantum computing, gates are represented as matrices
that are applied (matrix-multiplied) to the statevectors.

3.1 Fundamental gates

3.1.1 Identity Gate

The Identity gate takes the form of a simple identity matrix: it does nothing
to actually change the state of the qubit.

I =

[
1 0
0 1

]
3.1.2 X Gate

The (Pauli) X gate is the quantum analogue for the classical NOT gate.

X =

[
0 1
1 0

]
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Notice how the application of the X gate essentially swaps the amplitudes of
|0〉 and |1〉. In essence, the X gate flips the qubits around the X axis of the
Bloch sphere.

3.1.3 Z Gate

The Z gate is specific to quantum computing, as it dictates a property un-
known within classical computers: phase. The Z gate flips the phase of the
qubit, mirroring the qubits around the Z axis.

Z =

[
1 0
0 −1

]
3.1.4 H Gate

The Hadamard gate also addresses a property specific to quantum computing:
superposition. The H gate essentially places a qubit within a fixed state into
an equal superposition of the states |0〉 and |1〉.

H =
1√
2

[
1 1
1 −1

]
Visually, the H gate mirrors qubits around the Hadamard axis, or the line

defined by x = z on the Bloch sphere.

3.2 Standard Gates

3.2.1 Y gate

The Y gate mirrors qubits around the Y axis of the Bloch sphere.

Y =

[
0 −i
i 0

]
Thus, the Y gate functions like an X gate, only rotating with respect to a
different axis.

3.2.2 S Gate

The S gate is defined to be the square root of the Z gate:

S =

[
1 0
0 i

]
11



It rotates qubits by π
2

radians counterclockwise about the Z axis, rather than
a full π radians. It will turn |+〉 into |i+〉.

3.2.3 T Gate

The T gate is the square root of the S gate, or the fourth root of the Z gate.

T =

[
1 0
0 1+i√

2

]

3.3 Rotation Gates

Arbitrary rotation gates allows movement about the entire Bloch sphere.
These gates are not considered primitive, as they are constructed from other
primitive gates and the CNOT gate.

3.3.1 Rx Gate

The Rx gate performs a rotation about the X axis of the Bloch sphere, or
rather, moving qubits around the Y-Z plane.

Rx =

[
cos θ

2
−i · sin θ

2

−i · sin θ
2

cos θ
2

]
3.3.2 Ry Gate

The Ry gate performs a rotation about the Y axis.

Ry =

[
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

]
3.3.3 Rz Gate

There are two different ways to describe the Rz gate.

Rz =

[
ei
θ
2 0

0 ei
θ
2

]

Rϕ =

[
1 0
0 eiϕ

]
12



The first matrix simply rotates the qubit and applies a global phase to it.
However, it is not commonly used do to its application of a phase to the |0〉
state. The second matrix rotates the qubit about the Z axis but is defined
in terms of the phase angle, ϕ.

4 Entanglement and Multi-Qubit Gates

4.1 Qubit Registers

Within a quantum computer, an n qubit system has 2n possible measurement
outcomes. During computation, the system can be in a superposition of any
of these four states. Multi-qubit states are represented as the tensor product
of each individual statevector. So

|+〉 ⊗ |0〉 =
1√
2

[
1
1

]
⊗
[
1
0

]
=

1√
2


1
0
1
0


We may also express the above state as

1√
2

(|00〉+ |10〉)

4.2 Entanglement

One can construct a system such that the state of one qubit depends on
another. For example:

1√
2

(|00〉+ |11〉)

The implication here is that, when the system is measured, both qubits will
either be in the state |0〉 or |1〉, with a 50% probability of each. This means
that the states of each qubit are dependent on each other. Such a system
can be constructed with entanglement gates.

4.3 Gates

4.3.1 CNOT Gate

The CNOT gate consists of a control qubit and a target qubit, in which the
state of the target depends on the state of the control. If the control qubit is
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in state |1〉, an X (NOT) gate is enacted on the target; if the control is |0〉,
nothing happens as a result of the CNOT gate on the target.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


4.3.2 SWAP Gate

A SWAP gate swaps the states of the two qubits.

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


For example, the state |01〉 would change to |10〉.

4.3.3 CCNOT/Toffoli Gate

The Toffoli, or CCNOT is a doubly-controlled NOT gate. The target is
flipped only if both controls are in a state |1〉. The Toffoli gate matrix is
huge, as it must have 8 rows and columns:

CCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


4.3.4 CZ Gate

Theoretically, any gate can have a “controlled” form. For example, there
exists a CZ gate, which changes phase when both the control and target are
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in a state |1〉. This controlled Z gate is also known as a phase kickback.

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


4.3.5 0-Controlled Gates

Just like a control gate acts on its target qubit when its controls are in the
state |1〉, we may also configure a gate such that it acts on its target when
its controls are |0〉. In languages where this is not a built-in functionality, we
can just flip the control qubit to a |1〉 state, apply the controlled gate, and
then flip the qubit back to its original state.

4.4 Disentanglement

Applying the CNOT gate to both entangled qubits once again can disentangle
two qubits. This is because applying the CNOT once again cancels the
“NOT” action on the target qubit.

4.5 Bell States

Bell states are four different maximum entanglement states for a single pair
of qubits.

|Φ+〉 = 1√
2
|00〉+ 1√

2
|00〉

|0〉 H
|Φ+〉

|0〉

|Φ−〉 = 1√
2
|00〉 − 1√

2
|00〉

|0〉 H Z
|Φ−〉

|0〉

|Ψ+〉 = 1√
2
|01〉+ 1√

2
|10〉
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|0〉 H X
|Ψ+〉

|0〉

|Ψ−〉 = 1√
2
|01〉 − 1√

2
|10〉

|0〉 H X
|Ψ−〉

|0〉 Z

5 Circuits

System circuits can be visualized as a series of wires with either multi-qubit
or single-qubit operations.

5.1 Single Qubit

Single qubit gates are typically represented with a single box with the name
of the gate within it. For example:

|0〉 H |+〉

5.2 Measurement

Measurement is typically represented with a meter.

|0〉 X |1〉

5.3 Multi Qubit

CNOT Gate

CZ Gate

16



SWAP Gate

CCNOT Gate

6 Quantum Interference

Signals with the same frequency interfere with each other based on their
phase. When two waves are in phase, constructive interference occurs, thus
amplifying the wave; when the waves are out of phase, or have opposite phase,
destructive interference occurs and cancels out the waves. Superposition
terms with the same value are combined after a gate is applied.

6.1 Hadamard Gate

An example of interference is the application of the H gate twice.

H(|0〉) =
1√
2

(|0〉+ |1〉)

H(
1

2
(|0〉+ |1〉)) =

1√
2

(
1√
2

(|0〉+ |1〉) +
1√
2

(|0〉 − |1〉)
)

=
1

2
(2|0〉+ 0|1〉)

= |0〉

7 Thought Experiments

7.1 CHSH Game

The CHSH game (Clauser, Horne, Shimony, Holt) is a test of Bell’s theorem
as expressed as a thought experiment or game. It is played with two parties
(called Alice and Bob for tradition):
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1. The referee sends a random question bit, x ∈ {0, 1} to Alice, and
y ∈ {0, 1} to Bob.

2. Players have to respond with their own bit (a for Alice, b for Bob)
without classical communication with the other player.

3. The players win if x ∧ y = a⊕ b (x AND y is equal to a XOR b)

In the truth table below, we can see what the conditions for a, b have to be
so that the players win:

x y a⊕ b
0 0 0
0 1 0
1 0 0
1 1 1

The best classical strategy would be for the players to always choose 1; since
1 ⊕ 1 = 0, and the result of a ∧ b is 0 75% of the time. This would be the
optimal strategy if Alice and Bob were unable to violate locality, following
the bound set by Bell’s theorem. Thus, if there exists a more optimal solu-
tion with quantum operations, then local theories fail and Bell’s theorem is
violated. Instead of using bits, let’s say Alice and Bob use qubits instead,
answering the referee with the measurement results of their qubit. To start,
we can create the Bell state |Φ+〉, or

1√
2

(|00〉+ |11〉)

The next part of the strategy is to define a new basis as a function of an
angle θ.

φ0(θ) = cos θ|0〉+ sin θ|1〉
φ1(θ) = − sin θ|0〉+ cos θ|1〉

Recall that the arbitrary rotation gate Ry looks like:[
cos θ

2
sin θ

2

− sin θ
2

cos θ
2

]
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So, to change the basis to φ0(θ), φ1(θ) just involves applying the Ry gate
with 2θ to something in the old basis.

Ry(2θ)|Ψi〉 =

[
cos θ sin θ
− sin θ cos θ

]
·
[
a
b

]
From setting this state up, we can now play the game. If Alice receives x = 1,
she can measure her qubit in the basis of θ = π

8
. Otherwise, she can set her

basis to θ = −π
8
. It’s vice-versa for Bob; if he receives a 0, he can measure

his qubit in the basis θ = π
8
, and set θ = −π

8
otherwise. This strategy

will win the game 85% of the time, which surpasses the bound set by Bell’s
theorem. As it turns out, the 85% figure is the most optimal strategy in an
environment with nonlocal theories, according to Tsirelson’s bound.

7.2 GHZ Game

The GHZ game is similar in concept to the CHSH game, but it is played with
three players. The question bits sent by the referee xyz are not random:

1. The referee chooses xyz uniformly from the set {000, 011, 101, 110}

2. The winning condition for the game is x ∨ y ∨ z = a⊗ b⊗ c.

Again, a table can be constructed:

xyz a⊗ b⊗ c
000 0
011 1
101 1
110 1

The most optimal strategy here would be, again, for all players to choose
1 every time: since 75% of the outcomes are of the output 1, and we know
that 1⊗ 1⊗ 1 = 0⊗ 1 = 1, this will win 75% of the time. However, there is
a more optimal solution with entangled qubits. Alice, Bob, and Charlie can
construct the initial state in a register with their qubits:

|ψ〉 =
1

2
(|000〉 − |011〉 − |101〉 − |110〉)

In the game, the players can apply an H gate to their qubit if they receive a
1 from the referee and return the measured outcome in the standard basis.
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This game was formulated to show that, while impossible for a classical
strategy, one can win the game every time with a quantum strategy. It
works as a stronger proof for nonlocality than the CHSH game, because
it is absolute while CHSH relies on probabilistic disagreements. We can
see these effects by breaking this down into casework and applying each H
gate conditionally. What we will see is that there is some constructive and
destructive interference between states that eventually return four states, all
of which have an odd number of qubits in the |1〉 state. Since an odd number
of ones XORed with each other return a 1 as a result, the players will always
win with this strategy.

8 Protocols

8.1 Superdense Coding

We can encode information to a single qubit by using the reversibility of
the Bell states. With all four Bell states, we have the standard operations
(placing the qubit into a Φ+ state):

|Φ+〉 = 1√
2
|00〉+ 1√

2
|00〉

|0〉 H
|Φ+〉

|0〉

We know that we may generate other Bell states by applying other gates,
like X and Z. When we then decode the quantum state by applying the
CNOT and H gates in reverse, there would be some “leftover breadcrumbs”
depending on the Bell state that was first applied to the two qubits.

State Gate Result
Φ+ - |00〉
Ψ+ X |01〉
Φ− Z |10〉
Ψ− XZ |11〉

Superdense coding generates a secure channel. Imagine a situation where
Alice is sending a message to Bob, where qubits were previously entangled
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and put in the Bell state by a third-party satellite. Alice and Bob hold each
hold one qubit of the two-qubit system. Thus, to disentangle the system and
find out what the message is, one would need both Alice’s transmitted qubit
and Bob’s qubit, which prevents an eavesdropper (Eve) from intercepting
and decoding the message mid-transmission.

8.2 Quantum Communication without Entanglement

Quantum memory is very costly, and keeping entangled qubits coherent at
large distances is challenging. These physical limitations motivate the search
for an algorithm to encode qubits without using entanglement. On the hard-
ware side of things, qubits can be sent as photons through fiber optic cables,
setnt through a beam splitter. By simply sending qubits through the fiber
optic channel, Eve cannot “win” the game; when she observes, or measures
the state of the qubit, the state collapses. However, if Eve knows that Alice
is sending either a |+〉 or |−〉, then she can measure with respect to the
Hadamard basis, which would not collapse the superposition. Therefore, Al-
ice must choose bases at random while encoding the channel to protect the
message from Eve. The drawback to this is that Bob will also have no idea
what basis Alice is sending each qubit in.

There are two protocols that implement these ideas.

8.2.1 Quantum Key Distribution

The idea behind QKD is that Alice and Bob have a shared private key. The
BB84 protocol (Bennet-Brassard 1984) states that:

1. Alice randomly generates two n-bit strings, named t and y.

2. If yi = 0, Alice sends a |ti〉. If yi = 1, then Alice sends H|ti〉.

3. Bob randomly generates an n-bit string, named z. If zi = 1, Bob
applies an H gate and measures. Otherwise, he does not apply the H
gate. He then records the measurements into a string r.

4. Alice and Bob share y, z. They then throw out any of the bits ti, ri if
yi 6= zi.

5. t, r should thus be identical. Sharing just a few of the bits will con-
firm whether or not Eve intercepted their communication or not; if

21



the bitstrings are inconsistent with each other, then Eve must have in-
tervened and collapsed a superposition in the process, indicating that
their channel is not safe.

You might notice that there are several ways that Eve gets away with in-
tercepting the channel. She may choose the correct basis, or accidentally
measure every bit the correct way each time; she ends up have a 75% chance
of success in intercepting a single bit. However, her chance of success goes
down for each bit checked between Alice and Bob in step 4. This way, QKD
is as secure as the users want it to be. To reconcile some inconsistencies due
to quantum error, there are two specific protocols: Cascade protocol, and
Privacy amplification. In the Cascade protocol, Alice and Bob disclose some
information in the form of parity checks to correct discrepancies. In Privacy
amplification, Alice and Bob decrease the sizes of their keys by hashing, ac-
counting for the information they shared. A major advantage of QKD is that
the qubit transfer is purely one-sided.

8.2.2 Direct Communication

Direct communication supposes that qubits are used to send a message di-
rectly. In Kak’s Three-Stage protocol,

1. Alice randomly generates an angle, α, and sends Ry(α)|t〉 to Bob.

2. Bob randomly generates an angle, β, and sends Ry(β)Ry(α)|t〉 to Alice.

3. Alice then applies Ry(−α) and sends Bob Ry(−α)Ry(β)Ry(α)|t〉 =
Ry(β)|t〉.

4. Bob applies Ry(−β) and measures the resulting state, |t〉.

The main issue with this protocol is that there is much more communication
in process; therefore, there is a greater chance that the qubits will become
decoherent.

9 Algorithms

9.1 Deutsch-Jozsa Algorithm

Suppose that there exists a black-box function that outputs a 0 or a 1 based
on a binary input. We are promised that the output is either constant (it
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outputs the same value for all possible input combinations) or it is balanced
(outputs 0 for half of the input combinations, and 1 for the other half).
On a classical computer, the worst case scenario would require us to test
2n−1+1 solutions, with n being the number of bits in the input. However, this
problem could be solved in one operation on a quantum computer; utilizing
a quantum oracle (an operation that phase-flips a target bit based on the
input).

9.1.1 2 input qubits

Suppose we’re given a 2 qubit input oracle with a truth table, where a, b, c,
d are either 1 or -1.

Input Output
|00〉 a
|01〉 b
|10〉 c
|11〉 d

Before the oracle is applied, we have a state of

1

2
(|00〉+ |01〉+ |10〉+ |11〉)

After the oracle, any terms that cause a phase flip in the target qubit are
also flipped, giving a state of

1

2
(a|00〉+ b|01〉+ c|10〉+ d|11〉)

We can then apply a second round of H gates to all of the input qubits,
which, after expansion, would leave us with

Hall

[
1
2
(a|00〉+ b|01〉+ c|10〉+ d|11〉)

]
⇓

1
4
[(a+b+c+d)|00〉+(a−b+c−d)|01〉+(a+b−c−d)|10〉+(a−b−c+d)|11〉]

Because of the concept of phase interference, we are left with the idea that
if a + b + c + d = 0, or otherwise, if there’s a 0% chance of measuring all
zeroes in the qubit register, then we know the operation was balanced; so if
we measure all of the qubits and exactly one of the results turns out to be in
a |1〉 state, then we are certain that the operation was balanced. Conversely,
if we measure the qubits in the register and the states are all |0〉, then we
can be certain that the operation was constant.
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9.1.2 Generalized circuit

|+〉

...
...

...
...

|+〉

|1〉

|0〉 H

Oracle

H

|0〉 H H

|0〉 X

In the end, if the measured output is all |0〉s, then we are guaranteed that
the operation in the oracle is a constant function.

9.2 Grover’s Algorithm

Grover’s algorithm would, theoretically, reduce the operations required for
a classical searching algorithm by a square root of it: it has O(

√
N) time.

The algorithm takes in an input of n qubits and returns a state in which the
correct output exists with high probability.

1. Apply H to all of the input qubits, which results in a uniform superpo-
sition of 2n possible states

2. Apply an X gate to the target qubit so that it is in the |1〉 state

3. Run the Grover iteration 2
n
2 times

4. Measure the input register, in which the the correct state is measured
with high probability

The Grover iteration consists of the steps:

1. Run the oracle (that would flip the phase of the correct state) on the
input register and target qubit

2. Apply H to all of the input qubits

3. Negate the state with all zeroes |0 · · · 0〉 with a zero-controlled Z on the
output, with all of the inputs as controls

4. Apply H to all of the input qubits
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9.2.1 Explanation at length

Obviously, the numbered list does not necessarily do much to increase an
understanding of Grover’s algorithm. Why are we negating the state with
all zeroes? Why are we applying H to all of the qubits?
To begin, we should start with the question: How do we set a specific state
apart from all of the others in an equal superposition? How Grover’s algo-
rithm seeks to achieve this is by applying a phase-flip to a certain state that
fits exactly the right conditions. In other words, we need to go from this:

|00〉 |01〉 |10〉 |11〉

25

to this:

|00〉 |01〉 |10〉 |11〉
−25

0

25

We can do this using a controlled Z gate, with zero-controls implemented
as necessary. For example, let’s say we’re searching for the state |10〉 in a
two-qubit system. We can then flip the phase of the state:

|0〉

|0〉

|0〉

inputs
H

H

ancilla Z

oracle
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We put a control on the first qubit and a 0-control on the second qubit so
that we get a phase flip when we are in the state |10〉. We then apply the H
gate in order to manipulate the amplitudes of our entire system to increase
the probability that we’ll get the right answer when we measure. So, after
step 1, we end up with a uniform superposition:

1

2
(|00〉+ |01〉+ |10〉+ |11〉)

After the application of the oracle, or the controlled Z, gate, we end up with

1

2
(|00〉+ |01〉 − |10〉+ |11〉)

Side note: how do we apply 2 single-qubit gates at once?
When we first start with a blank slate, we are in the state |00〉, or, as ex-
pressed as a vector: 

1
0
0
0


We can’t simply apply a Hadamard gate to the vector as it is now; the H
gate was designed for a single qubit. However, we can tensor the gate with
itself to find what is effectively a single gate that applies an H gate to two
qubits. This is the identity,

A(v1)⊗B(v2) = (A⊗B)(v1 ⊗ v2)

Thus, the 2-qubit Hadamard operation is the matrix

1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


Back to the algorithm. After this first step, we’re left with a phase-flip
on our desired state, differentiating it from the other states. This is good,
right? Wrong. We can’t end here, since we still have an equal likelihood that
we will measure any of the four states; the phase-flip doesn’t do anything
to change the probability, since our probability is our amplitude-squared
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(thus destroying any information we have about signs and phases). So, there
arises a need for an amplification operator. The problem here is that we
need some sort of operator that will amplify the probabilities of any states
with a negative phase. This is where Grover’s Diffusion operator comes
in. Graphically, this can be represented as flipping each amplitude of the
component about the average of the amplitudes. As seen in our graph from
earlier, this will then correspond to our desired state flipping over the axis
by a large delta, while the other states change by just a small margin. We
go from:

|00〉 |01〉 |10〉 |11〉
−25

0

25

to

|00〉 |01〉 |10〉 |11〉

25

(diagram not to scale). We notice that each time, from here on, that we
perform these operators, the amplitude of our desired state will only increase
(which is what we want).

Now, how do we translate this into gates? One way to do this: we apply
an H gate, once again, to our state. Keep in mind that we should apply the
H gate afterwards, as well. The motivation behind this is to transform our
state into a vector with all zeroes (|00〉), and we can apply the H gate after
the fact to undo this operation. We now end up with the state

1

2
(|00〉 − |01〉+ |10〉+ |11〉)
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Then, we apply a controlled Z operator such that it will flip the phase of
anything in a |00〉 state. This leaves us with

1

2
(−|00〉 − |01〉+ |10〉+ |11〉)

Once we apply the H gate again, we’re left with

1

4
(−4|10〉) = −|10〉

and we’re left with our desired state. Since this system is on the simpler side
(with 2 qubits), we were able to find our state in one iteration. However, the
algorithm normally takes on the order of

√
N, N = 2n iterations to achieve

a confident result.

9.2.2 Complexity Analysis

It’s been said that the time complexity of Grover’s algorithm is something
on the order of O(

√
N) (or, more accurately, O(π

4

√
N)). Where does this

figure come from?
There is another geometric interpretation of Grover’s algorithm: we think

of our desired state (say, |good〉) as some sort of vertical axis, and all of the
states we don’t want (|bad〉) as a horizontal axis. This works because |bad〉
and |good〉 are perpendicular to each other; they are exclusive towards each
other. Between these two axes, we can have a vector |Ψ〉 that represents our
state.

|good〉

|bad〉

|Ψ〉

θ
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When we apply the oracle operator that would flip the phase of our desired
state, then we end up reflecting our |Ψ〉 vector over the |bad〉 axis (similar in
principle to the bar-graph visualization).

|good〉

|bad〉

|Ψ′〉

θ
θ

|Ψ〉

Then, when we apply the Diffusion operator, we are effectively flipping |Ψ′〉
about the axis |Ψ〉.

|good〉

|bad〉

|Ψ′〉

2θ

θ

|Ψ〉

So, effectively, the usage of both the oracle and the diffusion operator rotates
our state counterclockwise by the angle 2θ. Basically, the closer we are to the
|good〉 axis, the more likely we are to find our |good〉 state when we measure
|Ψ′〉. Ideally, the final angle between |Ψ′〉 and |bad〉 would be π

2
(or at least,
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very close to it). So, let’s define a number a that is the number of Grover
iterations we perform. Then,

π

2
≈ θ + 2aθ

We need to find θ somehow. The inner product (or dot product) between
|good〉 and |Ψ〉 is ||good〉| · ||Ψ〉| · cos(π

2
− θ). Since quantum states are nor-

malized, the equation reduces down to cos(π
2
− θ), which can be transformed

into sin(θ) by trigonometric identities. The dot product between the states
is equal to 1√

2n
— we know that, since Ψ is in equal superposition, the am-

plitude of each of these states is 1√
2n

. We also know that |good〉 contains a

|1〉 in the only “correct” state; so, the dot product should be 1√
2n

. So:

sin(θ) =
1√
2n

By the small angle approximation for sine:

θ ≈ 1√
2n

We know that the resulting angle will be (2a + 1)θ for a Grover iterations.
Since we want it to be close to π

2
:

π

2
≈ (2a+ 1)θ ≈ 2a+ 1√

2n

Doing some rearrangement, we get that

a ≈ π

4

√
2n =

π

4

√
N

So the number of iterations we need is around the order of
√
N . Note that

if we overshoot this number, we will rotate our state “backwards”; we will
get further from our target than we want. This is why it’s important to hit
a “perfect spot” in determining the number of iterations needed.
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9.2.3 Circuit

x0

x1

. . .

xn−1

|0〉

inputs

H

Oracle

H

check zeroes

H

H H H

H H H

H H H

X Z Z

9.3 Simon’s Algorithm

This algorithm is an example of a hybrid algorithm; an algorithm that uses
the abilities of both quantum and classical computers to solve problems.
Suppose that we are given a blackbox operation that takes in two qubit
registers: an input, and output, both of the same size. This is a 2− > 1
function; there are two inputs for every possible output. We define a string
s such that:

f(x0) = y, f(x1) = y

x0 ⊕ x1 = s

For any pair of inputs that produce the same output, we always get the
same string s after XORing the input strings. For example, s = |100〉 for
the left-shift operation on a 3-qubit input-output system. Given this setup,
how many iterations are needed to find a pair of inputs that produce the
same output? Or, how fast can one find the secret string for a given black-
box function? This algorithm utilizes classical computing for pre and post
processing. Briefly, the algorithm works like this:

1. Apply the quantum oracle to an input register in a uniform superposi-
tion. Apply the H gate to all of the qubits, and then measure them.

2. The previous operation will produce a bitstring y where the mod-2 dot
product of the bitstring and s is 0 ((y0 ·s0)⊕(y1 ·s1)⊕· · ·⊕(yn−1 ·sn−1) =
0)
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3. We can add the bitstring to our list of outputs. Repeat the quantum
step again, and if the output is not linearly independent from the other
outputs in the list, discard it.

4. We repeat the quantum step until we have a total of n − 1 linearly
independent bit strings.

5. We are left with n − 1 linearly independent bitstrings which forms a
matrix of n− 1 linear equations.

6. We can use a classical process to uncover the nth linearly independent
equation, and we can add this to our matrix.

7. We can use a classical mod-2 Gaussian elimination/back substitution
process to solve the matrix.

8. The solution to the matrix will give us the string s, with which we can
check with a further classical process.

The corresponding circuit to the quantum component is as follows:

|0〉
y0

|0〉
y1

. . .
· · ·

|0〉
yn−1

|0〉

|0〉
. . .

|0〉

Input (x)

H

Oracle

H

Measured

H H

H H

H H

Output (o) Unused

As you can see, the crucial part of the algorithm depends on the classical
processing.
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9.4 Quantum Fourier Transform

Data is commonly collected in terms of a time domain. For some periodic
data, plotting it against a time axis allows the observer to see (mostly) clearly
defined peaks and troughs and identify a period in the data. However, with
this interpretation, some patterns in the periodicity are hard to observe. This
is where plotting information on a frequency domain comes in. In general, a
wave is defined by:

y = a · sin(f · x+ p)

where a is amplitude, f is frequency, and p is phase. However, most data
will not behave as a simple and smooth sine wave. Thus, we can think of
some wave as a sum of different wave functions with different frequencies
and phases, a compound wave. The problem statement, then, is thus: we
need to find some algorithm that will find all of the different waves that one
must combine to approximate some function to a certain degree; or, we must
find an algorithm to find a Fourier series. The way we do this is the Fourier
Transform. The Discrete Fourier Transform is described as:

Xk =
N−1∑
n=0

xn · e
−2πkni
N

where N is the number of values in the original data, xn is the nth value in
the original data, and k is the index of the corresponding output value. To
calculate the entire transform for the input set, we would have to run this
operation from k = 0 to k = N − 1. Xk frequencies in the outputs aren’t
t exact; they’re ranges that the corresponding waves fall into. The fidelity
of the DFT, then, is dependent on the number of samples that exist in the
original data.
What we get out of the DFT is a sort of set of data that tells you the
strengths of various frequencies in your data set. For each of the outputs
from the discrete time periods (which are complex numbers), we can use
formulas to extract the frequency, amplitude, and phase of the specific wave
— values that will be used to recreate the original periodic function. For a
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value yk = a+ bi:

frequencyi =
i

r

amplitudei =
2
√
a2 + b2

N
phasei = atan2(b, a)

where i is your index, r is your range of your values in your initial domain,
and N is your sample size.
Now, we need some way of translating this to a quantum algorithm. We can
encode our state as:

|ψ〉 = x0|0〉+ x1|1〉+ · · ·+ xN−1|N − 1〉 =
N−1∑
a=0

xa|a〉

Traditionally, the QFT is represented as an inverse transform (from frequency
to time), rather than the other way around. Thus, to get the same effect, we
need to apply the inverse of the QFT. So, the QFT is just

Xk =
N−1∑
n=0

xn ∗ e
2πkni
N

Define N as the classical array size, and n as the number of qubits used. So,
N = 2n.

|ψ〉 =
N−1∑
a=0

xa|a〉

IQFT (ψ), |ψ′〉 =
2n−1∑
k=0

2n−1∑
a=0

xa · e
−2πkai

2n |a〉

9.4.1 Purpose

We have to ask: why is using the Fourier transform useful? There are many
benefits provided by the idea of deconstructing a periodic function into simple
sine and cosine waves. For example, when transmitting audio information,
it is less resource-intensive to send a set of discrete points that represent the
Fourier transform of the wave, rather than sending samples of the wave itself.
Along this line of reasoning, it is also much easier to reconstruct a wave from
a seriers of sine and cosine waves, rather than from discrete samples of it.
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9.4.2 Circuit

To start, we can define some rotation gate:

Ra =

[
1 0

0 e
2πi
2a

]
The QFT (non-inverted version) is as shown:

· · ·

· · ·
· · ·

· · ·

|x0〉 H R2 R... Rn− 1 Rn

SWAP

|x1〉 H

|· · · 〉
|xn−2〉

|xn−1〉

Basically, in a sequence from qubits 0− (n− 1), we:

1. Apply an H gate

2. Sequentially apply a controlled Ra gate to every qubit after it, with the
other qubit being its control

3. a is equal to one more than the difference between the indexes of the
qubits

4. After all gates have been applied, swap the entire register

9.5 Shor’s Algorithm

The problem that Shor’s algorithm attempts to solve is: given some non-
prime integer N , find an integer greater than 1 and less than N that divides
it evenly.

Find a where N
a

= b
1 < a < N
a, b,N ∈ Z
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For large numbers, this problem is extremely resource-intensive. Integer fac-
torization is classified as an NP problem, which makes it useful for cryptog-
raphy; since it is hard to find some divisor without a brute-force algorithm,
integer divisors are more secure to use in a cryptographical context. Shor’s
algorithm has the potential to bring this problem into the BQP space - bring-
ing the time-scale that the algorithm takes down to a human-recognizable
period. Thus, it has the potential to break many asymmetrical key crypto-
graphic functions.

9.5.1 Modular Exponentiation

Consider the equation
y = ax mod b

So, for example,

110 mod 21 = 1

111 mod 21 = 11

· · ·

We can represent this operation as a quantum circuit so that we may utilize
it in quantum algorithms. The equation takes in four arguments:

1. x: input (perhaps in superposition)

2. y: output

3. a: classical integer

4. b: classical integer

Recall that a binary expansion of a binary number x (in big-endian notation)
is:

dec(x) = (x0 · 2n−1 + x1 · 2n−2 + · · ·+ xn−1 · 20)

Thus,

y = ax mod b

= ax0·2
n−1+x1·2n−2+···+xn−1·20 mod b

= ax0·2
n−1 · ax1·2n−2 · · · axn−1·20 mod b

= (ax0·2
n−1

mod b) · (ax1·2n−2

mod b) · · · (axn−1···20 mod b) mod b
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We can apply this to quantum states as well. When xi = 0, we get something
like:

|r′〉 = (|r〉 · a0·2n−i−1

mod b) mod b

= (|r〉 · a0 mod b) mod b

= (|r〉 mod b) mod b

= |r〉

So, for bits where xi = 0, we wouldn’t do anything to the output; this can be
implemented with controlled operations. Basically, the circuit for quantum
modular exponentiation looks something like:

|x0〉

|x1〉

|· · · 〉

|xn−1〉

|0〉

|0〉

|· · · 〉

|0〉

I

O

ModMul
c =

a2
n−1

mod b

ModMul
c =

a2
n−2

mod b

ModMul
c =
· · ·

mod b

ModMul
c =

a2
0

mod b

X

|r′〉 = (|r〉 · c) mod b
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The input register in the circuit holds the binary value x, the exponent in
y = ax mod b. Tbe output register starts with its last value set to |1〉 and
has a chain of controlled modular multiplications. Each modular multiplier
is parameterized by the constant c, as defined in each successive gate.

9.5.2 Periodicity of Modular Exponentiation

Recall
y = ax mod b

If a and b are coprime, then the output of the function y is periodic (cyclical,
repeats forever). More generally, the period of the modExp function is the
smallest value of p that satisfies the equation

ap mod b = 1, p > 0

Classically, finding the period of a modular exponentiation function is an
NP-hard problem. There is no trick to doing this classically. However, we
can solve this in a reasonable time with quantum operations. Set a register
|x〉 in equal superposition so that

|x〉 =
1√
2n

2n−1∑
i=0

|i〉

We can then run modular exponentiation:

|x, y〉 = 1√
2n

∑2n−1
i=0 |i, 0〉

ModExp(|x〉, |0〉), |x, y〉 = 1√
2n

∑2n−1
i=0 |i, ai mod b〉

With the results, we now have a superposition with a periodic component
to it. Because the input and output registers themselves do not have in-
formation about the periodicity of the outcomes, the period information is
encoded within the relationship between the input and output. Now, we can
just run the IQFT to find the period (and consequentially, the frequency).
The circuit looks something like:
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|x0〉

|x1〉

|· · · 〉

|xn−1〉

|0〉

|0〉

|· · · 〉

|0〉

I

H

ModExp
o = ax mod b

IQFT Input Measurement
H

H

H

O Output (unused)

We go from

|x, o〉 =
1√
2n

2n−1∑
j=0

|j, aj mod b〉

to

|x, o〉 =
1

2n

2n−1∑
k=0

2n−1∑
j=0

e−2πijk/2
n|k, aj mod b〉

The operation will cause quantum interference such that most states will
destructively interfere with each other so that the amplitudes are decreased
by a large amount. However, some states will constructively interfere, creat-
ing “peaks” (the number of which correspond to the value of the period of
the modular exponentiation function). We can call the peaks special states,
denoting the i-th state as si. The states amplified by the algorithm follow
the equation

si =
2n · i
p

, 0 ≤ i < p
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where p is our period. Because |xi〉 is an integer, it is rounded to the closest
value of the corresponding special state.

|xi〉 ≈
2n · i
p

The formula can be rearranged into

|xi〉
2n
≈ i

p

So when we measure xi, we have a close approximation for i
p
. We can’t get

the value of p exactly with this alone. We can, however, get the precise value
of i

p
using continued fractions, or a fraction of the form

a0 +
1

a1 + 1
a2+···

Any real number can be expressed in this form. For irrational numbers, the
continued fraction will repeat forever; for rational numbers, the fraction will
end at some point. Because i, p ∈ Z, we know that i

p
∈ Q. There is a simple,

iterative algorithm for getting the coefficients ai of the continued fraction:

1. Call P0 the numerator used for the first iteration, and Q0 the denomi-
nator for the first iteration. P0 = P, Q0 = Q

2. The first coefficient, a0, will be the P0 integer divided by Q0: a0 =
⌊
P0

Q0

⌋
3. Define a variable r0 so that r0 = P0 mod Q0

4. For the next iteration, P1 = Q0, Q1 = r0

5. We can repeat step 2 to obtain the next coefficient, and steps 3/4 to
get the next P and Q.

6. Repeat until we get to a point where ri = 0

We can approximate these continued fractions to a degree; these are known
as convergents. Define vi such that it will be the i-th convergent of some
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continued fraction. Then,

v0 = a0

v1 = a0 +
1

a1

v2 = a0 +
1

a1 + 1
a2

and so on and so forth. There also exists an algorithm to calculate the
numerator (ni) and denominator (di) for a convergent.

1. Start with the values n−2 = 0, d−2 = 1, n−1 = 1, d−1 = 0

2. Calculate n0 = a0 · n−1 + n−2 and d0 = a0 · d−1 + d−2

3. Repeat the process: ni = ai · ni−1 + ni−2, di = ai · di−1 + di−2

4. Keep going until di is larger than some arbitrary cutoff, after which it
is determined that the subsequent denominators become to large (and,
the subsequent fractions become too small) to matter.

In the period-finding algorithm, the cutoff can be set to b; that is, the modulus
value used in the modular exponentiation. We return the last denominator
that is less than the modulus. After we’ve calculated some arbitrarily close
fraction, we can apply the knowledge that the fraction is, in some way, equal
to i

p
. However, since the output will be in some reduced form, we should

check to see if the answer is the actual period; if not, then the period is
actually some multiple of the denominator.

9.5.3 Aggregating Factors

After running the quantum subroutine to find the special states of the peri-
odic modExp function, we can construct a list of factors of our period (given
by the denominators of the outputs of the convergent-finding algorithm).
Let’s say that, after running the algorithm twice, we have two values: d0
and d1, which are the denominators of the reduced function output by the
period finding algorithm. Now, we can find the actual period of the func-
tion by taking the least common multiple (LCM) of the values, given by the
formula:

lcm(d0, d1) =
d0 · d1

gcd(d0, d1)
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where the greatest common divisor (GCD) can be found efficiently with Eu-
clid’s algorithm. We can run this over and over with a new period and new
measurements until we find a period p that satisfies the initial equation:

ap mod b = 1

9.5.4 Summary

The goal of Shor’s algorithm is to find the period of ax mod b. We know
that a ⊥ b.

1. Run the quantum subroutine:

(a) Prepare an output register |o〉 = |0〉 of m qubits, where m =
dlog2(b+ 1)e because m must be large enough to hold b.

(b) Prepare an input register |x〉 = |0〉 of n qubits, which usually
works out to n = 2m.

(c) HALL|x〉, or put |x〉 into a uniform superposition.

(d) Run the modular exponentiation function with the input |x〉, out-
put |o〉, and parameterized with a, b

i. Apply X to |om−1〉 such that |o〉 = |1〉.
ii. Iterating through all of the qubits in the input, take its index,

i.

A. Calculate c = a2
n−1−i

mod b

B. Apply the controlled ModMul function, where the qubit
xi is the control bit, the register |o〉 is the target, c is the
multiplier, and b is the modulus.

iii. Repeat for all qubits in |x〉.
(e) Run the inverse QFT on |x〉.
(f) Measure the qubits in |x〉 and convert them to a decimal integer,

called x′.

2. If x′ = 0, this is the trivial case: discard it and try again.

3. Find the closest continued fraction convergent of x′

2n
.

(a) Start with the values: n−2 = 0, d−2 = 1, n−1 = 1, d−1 = 0, P0 =
x′, Q0 = 2n, i = 0
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(b) Calculate the coefficients of each step of the continued fraction:

ai =
⌊
Pi
Qi

⌋
(c) Calculate the remainder, ri = Pi mod Qi

(d) Calculate the convergent denominator di = ai · di−1 + di−2

(e) For the next iteration: increment i, set Pi = Qi−1, set Qi = ri−1

(f) Repeat until ri = 0 or di ≥ b. Return the last value of di that is
greater than b.

4. Check if adi mod b = 1. If it is, then di is the period; if not, then we
know di|p. Set di = f0

5. Run the steps over to find a new denominator, f1.

6. Calculate a larger factor of p with f = f0 · f1/ gcd(f0, f1).

7. If our new f fulfills the test requirement, then f = p. If not, set f = f2
and run again until the period is found.

9.5.5 Relevance to Factorization

The integer factorization problem is as follows:

Given some non-prime integer b, find an integer b0 that divides it evenly.
b|b0.

With Shor’s Algorithm, we can find the periodicity of some parameterized
modExp function, ap mod b = 1. With the rules of modular arithmetic,
that can be rewritten to

(ap − 1) mod b = 0

Again, this can be rewritten to

ap − 1 = z · b, z ∈ Z

So, give our knowledge of the period of the function, we can calculate z easily.
Let’s express our integers in the following way: b = b0 · b1, z = z9 · z1. Then,

ap − 1 = z0z1b0b1
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We can also rewrite ap− 1 as (a
p
2 )2− 1, which can be written in a difference

of squares format:
(a

p
2 − 1)(a

p
2 + 1) = z0z1b0b1

Basically, we’re guaranteed that (a
p
2 − 1) and (a

p
2 + 1) contains any product

combination of z0, z1, b0, b1. We can calculate the factors using the GCD
of one of the two factors listed above with b. For example:

gcd(b, a
p
2 + 1) = b0

gcd(b, a
p
2 − 1) = b1

We’ve found the factors using Shor’s algorithm and a few tricks. We can run
a few tests to make sure our result holds and is not the result of an overlook
of some trivial case. In summary:

1. Select an integer b to be factored. It should be composite, which can
be verified with a primality test.

2. If b is even, then its factors will just be 2 and b
2
. We can just return

them.

3. Choose a number a such that 2 < a < b.

4. If a and b are not coprime (if gcd(a, b) 6= 1) then the factors of b are
gcd(a, b) and b

gcd(a,b)

5. If gcd(a, b) = 1, then ax mod b is periodic - use Shor’s algorithm to
find the period p.

6. If p is odd, then it can’t be used for factoring, so we have to run the
algorithm again with a different value of a.

7. Check if a
p
2 mod b is equal to either 1 or −1; if it is, then we will get

the trivial factors of b, 1.

8. Calculate the factors of b:

(a) b0 = gcd(b, (a
p
2 mod b) + 1)

(b) b1 = gcd(b, (a
p
2 mod b)− 1)

9. Perform a sanity check, verifying that 2 < b0 < b, 2 < b1 < b, b0 ·b1 = b.
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9.6 Bernstein-Vazirani Algorithm

We have a function f : {0, 1}n → {0, 1} defined using a fixed and unknown
string, called s. where s = s0s1 · · · sn−1 The function operates under the
condition

f(x0x1 · · ·xn−1) = (s0 · x0)⊗ (s1 · x1)⊗ · · · ⊗ (sn−1 · xn−1)

Or, f performs the bitwise dot product of x and s. Our goal is to find s in
as few iterations as possible. Classically, we would need n iterations, as we
can modify one bit of x at a time and find a correspondence to a bit in s.
With a quantum algorithm, we only need 1 iteration. We can implement the
oracle, which will take in some input x and apply a bitflip to an output qubit
if f(x) = 1.

|x0〉

f
|x1〉
|· · · 〉

|xn−1〉

|0〉

Internally, the oracle will apply a CNOT gate for every si such that si = 1,
with si as the control and the output as the target. For s = 011:

|x0〉
|x1〉
|x2〉

|0〉

Now, our problem is to find which input bits are controls for a CNOT gate,
and which ones don’t affect the output. Our algorithm to solve this problem
is as follows:

1. Apply X to the output qubit so that it starts in the state |1〉

2. Apply HALL to the entire register, including the output

3. Run the oracle on the input register with the output as the target
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4. Apply HALL to the register again

5. Measure all of the inputs to find s

|x0〉 H

f

H

|x1〉 H H

|· · · 〉 H H

|xn−1〉 H H

|0〉 X H H

The algorithm demonstrates the implementation of phase kickback; applying
H gates before and after a CNOT gate swaps the control and target of the
CNOT gate. If we flip all of the CNOT gates in the earlier diagram upside
down (or, make the output qubit the control and the corresponding controls
into targets), then an output qubit in the |1〉 state would simply reveal the
string s encoded into the oracle with an input of all zeroes. We can prove
that this works with circuit diagram equivalence. Recall that H2 = I and
that HXH = Z. We can apply a control to this; if the control bit is 1, then
an HXH = Z gate is applied; otherwise, an HH = I gate is applied instead.
Therefore,

=
H H Z

In a CZ gate, the target and control are interchangeable. Then, if the output
bit is set to |1〉 before having an H gate applied to it, the CZ gates will
apply. The gates will then act on the input register bits that correspond to
an si = 1. When H gates are appleid to all of the input qubits, they will be
in the |+〉 state; when the oracle is applied, the qubits that correspond to
si = 0 will remain unaffected and will be placed back to |0〉 due to the HALL

operation at the end of the circuit. The qubits that correspond to si = 1,
however, will be targeted by an effective CZ gate that will change them into
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a |−〉 state, which will then measure as |1〉 after the HALL is applied. So,
our oracle from before:

|0〉 H H

|0〉 H H

|0〉 H H

|0〉 X H H

can be turned into

|0〉 H H

|0〉 H H

|0〉 H H

|0〉 X H H H H

because H2 = I. With the identity HXH = Z, the circuit can then be
turned into

|0〉 H H

|0〉 H H

|0〉 H H

|0〉 X

This, in turn, can be turned into

|0〉
|0〉

|0〉

|0〉 X
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9.7 Quantum Clustering Algorithm

A big problem in computing is the formulation of an algorithm for clustering
unlabeled data. Currently, there are many classical algorithms (such as K-
means) that attempt to cluster unlabeled data; however, they are relatively
expensive, and there arises a need for efficient algorithms. The process here
would be:

1. Obtain unlabeled data

2. Encode data points into quantum space

3. Execute a quantum clustering algorithm

4. Obtain clusters from the unlabeled data

9.7.1 K-means Algorithm

The K-means algorithm partitions unlabeled data into k clusters.

1. Initialization: Pick k data points as initial centroids

2. Assignment: Calculate distance between each data point and centroid,
and assign each data point to a centroid based on the closest distance

3. Update: Recalculate new centroids with a mean of newly assigned
points

4. Finish: No data points change clusters, and cluster centroids no longer
move

However, this algorithm has a very large time complexity, depends on Eu-
clidean distance (which generally does not make sense in discrete data sets)
and has a curse of dimensionality.

9.7.2 Q-means Algorithm

There also exists a Q-means algorithm that serves to be a quantum analogue
of the existing K-means algorithm. There are two problems at hand here:
encoding the classical data into quantum data, and measuring the proximity
between the data points and the centroids. What the Q-means algorithm
does differently is that it considers if measuring the distance between the
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centroid and a data point is really necessary ; in the quantum algorithm sim-
ply determines that the detecting similarity suffices, using the SWAP Test
(which compares the angle between two vectors to determine its “closeness”).
This Q-means algorithm has a poly-logarithmic time complexity per itera-
tion, and assumes that the data is stored in QRAM (which doesn’t exist at
present). Present implementations have various disadvantages, such as hard-
coded mapping, harsh termination criteria, and processed things with single
threads.

10 Error Correction

The idea with error correction is that multiple qubits are used to encode one
value, with the hope that it will be less prone to error and noise.

10.1 Bit-flip Error Correction

Bit-flip code uses two spare qubits to “protect” the original qubit. It works in
a way that allows it to identify and correct one single bit-flip error; however,
it can’t protect against more than one bit-flip nor phase-flip errors. First, we
enocde one original qubit into a “logical” qubit:

|Ψ0〉

|Ψ1〉

|Ψ2〉

|Ψ〉

|0〉

|0〉

The second part of the error correction scheme is something known as Syn-
drome Measurement After we define our single logical qubit, we can per-
form different checks to make sure which qubit in the logical unit was flipped,
if there was a bit flip at all. The circuit looks something like:
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|Ψ0〉

|Ψ1〉

|Ψ2〉

|0〉
diff0

|0〉
diff1

Logical unit

Ancilla

When we measure the ancilla qubits, the placement of the results can tell us
about the parity of the bits in the qubit. We can refer to the table:

Register state 0-1 Syndrome Measurement 0-2 Syndrome Measurement
000 |0〉 (same parity) |0〉 (same parity)
001 |0〉 (same parity) |1〉 (different parity)
010 1 (different parity) |1〉 (different parity)
100 |1〉 (different parity) |0〉 (same parity)

There are four possible outcomes of the syndrome measurement, each
corresponding to a different qubit. However, this approach is quite limited
in what it can do: it can only detect single-bit flips, and cannot do anything
about multi-bit or phase flips.

10.2 Steane’s Error Correction Code

Steane’s Error Correction Code uses 7 physical qubits to comprise a single
logical qubit. It is able to detect single bit-flip and phase-flip errors.
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|Ψ0〉

|Ψ1〉

|Ψ2〉

|Ψ3〉

|Ψ4〉

|Ψ5〉

|Ψ6〉

|Ψ〉

|0〉

|0〉

|0〉

|0〉 H

|0〉 H

|0〉 H

The circuit above creates a single logical, error protected qubit out of 7
physical qubits. Like the simple bit-flip code, we can perform syndrome
measurements to determine where the error is in the qubit. The syndrome
measurement consists of 6 ancilla qubits, with 3 of each allocated to detecting
bit flips and phase flips, respectively.

bit2

bit1

bit0

|Ψ0〉
|Ψ1〉
|Ψ2〉
|Ψ3〉
|Ψ4〉
|Ψ5〉
|Ψ6〉

|0〉

|0〉

|0〉

The diagram above shows the process for finding the bitflip of any physical
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qubits in the logical unit. The phase flip circuit is separate, but they can be
chained together:

phase2

phase1

phase0

|Ψ0〉

|Ψ1〉

|Ψ2〉

|Ψ3〉

|Ψ4〉

|Ψ5〉

|Ψ6〉

|0〉 H H

|0〉 H H

|0〉 H H

There’s a similar table for interpreting the results of the syndrome mea-
surements:

Broken Index S0 S1 S2

None 0 0 0
0 0 0 1
1 0 1 0
2 0 1 1
3 1 0 0
4 1 0 1
5 1 1 0
6 1 1 1

where Si represents the i-th bit measurement of the particular syndrome
measurement (phase or bitflip). Notice the relationship between the broken
index and the values of S0, S1, S2; The broken index is, generally, the decimal
value of the binary number S0S1S2 (big-endian order) −1.
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11 Other

11.1 Constructing the H gate

Ry =

[
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

]
, Rx =

[
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

]
, H =

1√
2

[
1 1
1 −1

]

[
cos π

2
−i sin π

2

−i sin π
2

cos π
2

]
·
[
cos π

4
− sin π

4

sin π
4

cos π
4

]
=

[
0 −i
−i 0

]
·

[
1√
2
− 1√

2
1√
2

1√
2

]

=

[
−i√
2

−i√
2

−i√
2

i√
2

]

=
−i√

2

[
1 1
1 −1

]
Because −i is a global phase, the resultant matrix is functionally equivalent
to the H gate.

11.2 W States

There are two “classes” for three-qubit states: the GHZ state, and the W
state. The GHZ state is simple: it’s a single superposition on one qubit with
the other two qubits entangled with it:

1√
2

(|000〉+ |111〉)

The other class, the W state, on the other hand, is a bit more complicated:

1√
3

(|100〉+ |010〉+ |001〉)

It’s hard to envision exactly how one would go about preparing this state.
Fortunately, we have arbitrary rotation gates at our disposal. The following
is a circuit diagram that prepares a 3-qubit register and encodes the W state.

(note: Ry rotates with the angle θ = 2 arccos
√

2
3
)
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|0〉 Ry

|0〉 X

|0〉 H

At least, that’s the circuit that I derived on my own. There is a much more
efficient circuit out there (that rotates with θ = 2 arccos 1√

3
):

|0〉 Ry X

|0〉 H

|0〉
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