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1 Kinematics

1.1 1-D

1.1.1 Definitions

note: all expressions here rely on acceleration being a constant value.

The instantaneous velocity of a particle at some point is defined to be the
derivative of the path evaluated at the specified point.

v(t) = lim
∆t→0

∆x

∆t
= x′(t) =

dx

dt

In addition, the distance traversed by some particle is given by the definite
integral of its velocity function:

∆x =

∫ t2

t1

v(t)dt

The instantaneous speed is the magnitude of the velocity vector:

|v(t)|

The instantaneous acceleration is defined as the change in velocity over time:

a(t) = lim
∆t→0

∆v

∆t
= x′′(t) =

dv

dt
=
d2x

dt2

Analogously,

∆v =

∫ t2

t1

a(t)dt

The average velocity, meanwhile, is the total distance traversed divided by
the total time taken.

v̄ =
∆x

∆t

Similarly, the average acceleration, is defined as

ā =
∆v

∆t
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1.1.2 “Big-Five” Equations

These equations, which can be derived from algebraic manipulations, can be
used to solve for unknown variables in any system.

∆x = v̄t

vf = v0 + at

x = v0t+
1

2
at2

x = vf t−
1

2
at2

v2
f = v2

0 + 2a(∆x)

Notice how each of these equations has a specific variable that does not show
up, which allows for the solving of that variable through other means and
substitutions.

1.1.3 Free Fall

Free fall problems are simply just a special case of 1-D motion, except that
a is always equal to the acceleration due to gravity on the Earth’s surface,
9.8. However, this is frequently rounded to 10 m

s2
. In many problems, the

downwards direction is assigned a negative value.

1.2 2-D

1.2.1 Definitions

note: all expressions here rely on acceleration being a constant value.

Position, velocity and acceleration are vector quantities: to describe one such
quantity, you need both a magnitude and a direction. Mathematicallly, we
define a position vector as a linear combination of the basis vectors i, j, k
and so forth (although k is only for 3-D situations):

r = xi + yj
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Therefore, we can integrate and differentiate with respect to these vector
quantities to find velocity and acceleration.

v(t) = lim
∆t→0

∆r

∆t
=
dr

dt

a(t) = lim
∆t→0

∆v

∆t
=
dv

dt
=
d2r

dt2

And analogously to 1-D motion, we can integrate quantities to obtain dis-
tance traversed and the change in velocity.

∆r =

∫ t2

t1

v(t)dt

∆v =

∫ t2

t1

a(t)dt

Derivatives and integrals are component-wise operations, meaning that they
are applied to each component of the vectors separately. What is really
meant by the expression dr

dt
, for example, is

dr

dt
=
dx

dt
i +

dy

dt
j

Because these are vector quantities, finding the speed or magnitude of dis-
placement requires the use of the Euclidean distance formula.

|r| =
√
x2 + y2

|v| =
√
v2
x + v2

y

Now, because taking derivatives and integrals are component-wise, this means
that quantities in the x and y direction are essentially independent; we do not
have to worry about one influencing the other. This means that when solving
for unknown quantities, we can simply “solve in one direction”. Thus, a sys-
tem of 2-D kinematics is really just two separate 1-D systems in a trenchcoat.
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1.2.2 “Big five” extended

The equations from 1-D kinematics still hold true in 2-D systems.

∆r = v̄t

vf = v0 + at

r = v0 +
1

2
at2

r = vf −
1

2
at2

v2
f = v2

0 + 2ar

1.2.3 Solving systems

Many problems will ask about whether or not two particles will collide, based
on their position vectors. In these situations, a particle will only collide with
another if there is a single value of t that satisfies both systems of equations:

x1(t) = x2(t)

y1(t) = y2(t)

where x1, x2, y1, y2 are functions of position based on time. To find angles
between quantities, we can leverage the dot product, defined to be

a · b =
n∑
i=1

ai · bi = |a||b| cos θ

1.2.4 Projectile Motion

Recall the conversions between the polar form of a path (given angle of eleva-
tion and a magnitude) and the rectangular form (given x and y components
of a vector).

v =
√
v2
x + v2

y

θ = arctan
vy
vx

For simplicity, we will assume that the only force acting on the system is the
force of gravity.
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In the x direction, velocity is constant because there is no horizontal force
acting on the system.

vx(t) = vx0

x(t) = x0 + vxt

vx0 = v0 cos θ

In the y direction, meanwhile, we need to consider g, the acceleration due to
gravity on Earth.

ay = −g
vy = vy0 − gt

∆y = vy0t−
1

2
gt2

∆y = vf0t+
1

2
gt2

v2
y = v2

y0 − 2g(∆y)

vy0 = v0 sin θ

x

y

θ

v
v sin θ

v cos θ

At the peak of some trajectory, vy will be equal to 0 as this is the point
where the downwards velocity due to gravity overtakes the initial upwards
velocity. All simple projectile motion will be parabolic, which means that we
can leverage symmetry to solve some situations.
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Projectile Equations
Through algebraic manipulations of our initial kinematics laws for projectile
systems, we can arrive at equations for the time and range of a projectile.

ttotal =
2v0 sin θ

g

R (range) =
v2

0 sin 2θ

g

y = tan θ · x−
(

g

2(v0 cos θ)2

)
· x2

1.2.5 Relative Quantities

When two objects are in relative motion, we need to decide a frame of refer-
ence with which to analyze the system. Positions will be meaningless unless
we specify where the origin of the coordinate plane is, for example. We can
examine relative position:

Point B

Point A

Point P

rP
re

la
tiv

e
to

B

rA rela
tive to B

r P
re

la
ti

v
e

to
A

From here, we can observe a relationship of the position vector of point P
relative to point B:

rP relative to B = rP relative to A + rA relative to B

We can further extend this relationship by taking derivatives to yield rela-
tionships between velocities and accelerations.

vP relative to B = vP relative to A + vA relative to B
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aP relative to B = aP relative to A + aA relative to B

Inertial reference frames move with a constant velocity with respect to each
other, meaning that

aB relative to A = 0

which then means
aP relative to B = aP relative to A

1.2.6 Uniform Circular Motion (UCM)

In circular motion, we have two components of acceleration: the tangential
component, which controls the magnitude of the velocity, and the radial
component, which controls the direction of the velocity. Note that atan = dv

dt
.

From simple trigonometry, we can gather that the position equation of a
point undergoing UCM is

r = 〈r cos θ, r sin θ〉

To find θ in terms of some time parameter t, we introduce a new parameter
ω which represents angular speed (v

r
). Then,

θ = ωt

In order to account for initial angular position, we introduce another param-
eter φ that indicates the initial angle of the particle. Thus,

θ = ωt+ φ

and the position equation becomes

r(t) = 〈r cos (ωt+ φ), r sin (ωt+ φ)〉

We can derive vector equations for both the velocity and acceleration from
this position equation by taking multiple derivatives.

v(t) = r′(t) = ωr〈− sin(ωt+ φ), cos(ωt+ φ)〉

a(t) = v′(t) = −ω2r〈cos(ωt+ φ), sin(ωt+ φ)〉
Notice how the acceleration and position vectors are scalar multiples of each
other, while the velocity vector is orthogonal to both. The magnitude of the
acceleration vector, by using the pythagorean theorem, comes out to

|a(t)| = ω2r =
v2

r
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2 Dynamics

2.1 Newton’s Laws

1.
An object at rest will remain at rest until an external force acts on it. An
object in motion will remain at a constant speed and direction unless some
unbalanced force affects it.
2.

F = ma

3.
Any force exerted by one object has an equal and opposite force exerted on
the object.

2.2 Forces

The superposition of all forces on a system is known as the net force of the
system.

Fnet =
n∑
i=1

Fi

This is a useful principle because it allows us to look at the total effects of a
system and break forces down into components in order to solve problems. In
practical solving, we usually break forces down into their x and y components.

F = 〈Fx, Fy〉

Fnet (x) =
n∑
i=1

Fi (x)

Fnet (y) =
n∑
i=1

Fi (y)

Inertia is the tendency of an object to resist acceleration. Mass is a measure
of inertia, while weight is a measure of force.
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2.2.1 Types of Forces

Gravitational Force

Gravitational force is going to be the acceleration due to gravity with respect
to a surface times the mass.

Fg = mg

Normal Force

The normal force of an object against a surface is always perpendicular to
the surface. For example, an object on a horizontal surface with no external
forces acting on it will have a normal force with magnitude mg. If some
additional vertical downwards force F0 were to be applied to it, the normal
force of the object would be mg + F0. On an inclined plane, this is equal to
mg cos θ where θ is the angle of the plane to the horizontal.

Frictional Force

To calculate the frictional force, we need something known as the coefficient of
friction, symbolized µ. Friction forces are divided into two categories: static
and kinetic. Static friction refers to the amount of force required to make an
object move at first, while kinetic friction refers to the friction encountered
by an object while moving on a surface. In general, the frictional force is the
product of the coefficient of friction and the normal force against the surface.

Fk = µkFN

Fs = µsFN

Tension Force

The tension force will always be parallel to the rope or string experiencing
it. The tension will always pull on the objects it is connected to, so the force
will always point towards the middle of the string.

Spring Force

The spring force is governed by Hooke’s Law, which states that

Fr = −k∆x
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where Fr denotes the restoring force of the spring, k denotes the specific
spring constant, and ∆x is the displacement of mass at the end of the spring
from its equilibrium position.

2.2.2 Types of Problems

Inclines

The free body diagram of a typical incline problem looks something like

Fg

FN
Ff

Note that Fg will be equal to mg. The component parallel to the plane, then,
is mg sin θ, and its normal component is mg cos θ. Then, the magnitude of
the normal force and frictional force just fall out.

FN = mg cos θ

Ff = µmg sin θ

Atwood Machines

Atwood machines consist of pulleys and strings, systems of which we can
solve in terms of like forces.
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In this system, we have two masses, blue and red (we’ll call them m1 and m2

respectively). We can make free body diagrams for each:

m1g

FT

m2g

FT

The tension force will always be the same across the entire rope. We can
then make a system of equations:

Fnet (m1) = FT −m1g = m1a1

Fnet (m2) = FT −m2g = m2a2

So we have two equations with three unknown variables (FT , a1, a2). The
third equation needed to solve the system completely comes from the idea
that the velocities of each mass must be equal in magnitude and opposite in
direction because they are connected by a rope.

v1 = −v2
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By taking a derivative,
a1 = −a2

These are the three equations needed to solve for the three unknowns in this
system.

3 Energy

3.1 Work

The work done on a single object due to an external force F is defined to be

dW = F · dr

Note that, when multiple forces act on the object, this is equivalent to saying

dW = Fnet · dr =
(∑

Fi

)
· dr

Work has units of a joule, which is also known as a newton-meter.

J = N ·m = kg ·m2/s2

Because work is defined to be a dot product, it is a scalar value. Correspond-
ing to the sign of work, there are three cases.

1. Work is negative — The force has a component antiparallel to dr, the
displacement vector. There is some tangential acceleration that causes
the object to slow down.

2. Work is zero — The force has no component parallel to dr and has no
tangential acceleration. The speed of the object doesn’t change.

3. Work is positive — This can be thought of as the opposite of case 1:
the force has a parallel component to dr. There is some tangential
acceleration that causes the object to speed up.

While we can reasonable calculate work through a dot product for constant
forces, we cannot do so for forces that are a function of the distance traversed.
We thus need to implement integration to deal with such cases.

W =

∫ f

i

F · dr =

∫ xf

xi

Fxdx+

∫ yf

yi

Fydy
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where i denotes the initial position and f denotes the final position. Note
that force is the derivative with respect to displacement of work:

F =
dW

dx

3.1.1 Work and Speed

Recall the definition of work:∫
dW =

∫
F · dr

Because the force will not necessarily be constant, we need to rewrite the in-
tegrand of the right hand sixde in terms of a variable and its own differential.

F · dr = ma · dr = m(axdx+ aydy) = m

(
dvx
dt
dx+

dvy
dt
dy

)
(excuse the abuse of notation here) we can rearrange this result:

m

(
dx

dt
dvx +

dy

dt
dvy

)
= m(vxdvx + vydvy)

And now we can integrate:∫
dW =

∫
m(vxdvx + vydvy)

W = m

(∫
vxdvx +

∫
vydvy

)
W = m

[
v2
x

2
+
v2
y

2

]vf
v0

W =
m

2
[(v2

f (x) + v2
f (y))− (v2

0 (x) + v2
0 (y))]

v =
√
v2
x + v2

y

W =
mv2

F

2
− mv2

0

2
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3.2 Energy

3.2.1 Kinetic Energy

Kinetic energy is defined to be

KE =
mv2

2

Recall from the last section that we derived the relation

W =
mv2

F

2
− mv2

0

2

The right hand side is simply the change in kinetic energy, or ∆KE. This
leads us to an important theorem, known as the Work-Kinetic Energy The-
orem:

W = ∆KE

3.2.2 Potential Energy

Gravitational Potential Energy

The equation for gravitational potential energy is

Ugravitational = mgh

where m denotes mass, g denotes gravity, and h denotes the height above
the surface.

Elastic Potential Energy

Elastic potential energy (that is, potential energy for a spring system) is
given by the equation

Uspring =
kx2

2

where k is the very same spring constant, and x is the distance traversed by
the mass at its end.
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3.2.3 Conservation of Energy

The principle of the conservation of energy states that energy cannot ever
be created, nor destroyed; it can only be converted into different forms. For
example, kinetic energy can transform to potential energy, and vice versa.
Conservative forces refer to conversions in energy that are easily reversible.
The operation of converting kinetic energy to potential energy can, for ex-
ample, easily be converted the other way.
Non-conservative forces refer to energy conversions that aren’t easily re-
versible, if virtually impossible. We can convert kinetic energy to sound
or heat energy, but the same cannot necessarily be said for the other way
around.
When conservative forces perform negative work and remove kinetic energy
from an object, that excess energy gets converted to potential energy. An
alternate definition of a conservative force is one in which a potential energy
function, like U(x, y, z), can be defined such that the work is equal to the
change in that function between two different points.

W = −∆U(x, y, z) = U(x1, y1, z1)− U(x2, y2, z2)

This law is fundamental to our understanding of energy, as we can derive all
of the equations that express potential energy from this single equation. In
addition, notice how we can now say

∆KE = −∆U

which makes intuitive sense given physical interactions.

3.2.4 Unifying KE and U

Given situations where multiple conservative forces are acting (gravity and
spring forces, for example), we need to find a way to unify these into a single
expression.

Wnet =
∑

Wi =
∑

(−∆Wi)

Let W and U denote net work and net potential energy, respectively. Then
we end up with the equation

Wnet = −∆Unet

17



Note that this is only valid for cases where all forces are conservative. The
mechanical energy of a system is defined as the sum of the kinetic and po-
tential energies.

Emech = KE + U

Without nonconservative forces, mechanical energy is constant.

∆Emech = ∆(KE + U) = ∆KE + ∆U = W −W = 0

With non-conservative forces, however,

∆Emech = Wnon-conservative

And so the general form of the energy conservation equation is expressed as

KE1 + U1 +Wnon-conservative = KE2 + U2

3.3 Power

Power is defined to be the rate at which a force does work on a system.

P =
dW

dt

P̄ =
W

∆t
Power has units of joules per second, which is the definition of a watt. For
constant forces,

P = F · dr
dt

= F · v

4 Linear Momentum and Centroids

4.1 Momentum and Impulse

Momentum is a vector quantity, defined as

p = mv

Force is the time derivative of momentum: that is,

F = ma = m
dv

dt
=
dp

dt

18



When the net force on a system is 0, the momentum of the system remains
constant. ∑

system (t1)

p =
∑

system (t2)

p

The impulse of a system is defined to be

J =

∫ t2

t1

Fdt

For constant forces, this means that

J = F∆t

Impulse is also defined as the change in momentum:

dp = Fdt⇒ J =

∫
dp = ∆p

Recall the integral mean value theorem:

avg(f(x)) =
1

b− a

∫ b

a

f(x)dx

This is applied to forces in terms of momentum, so

Faverage =

∫ t2
t1

Fdt

t2 − t2
=

J

∆t

4.2 Collisions

There are three (really, two) types of collisions.

1. In elastic collisions, kinetic energy is conserved, meaning that it is the
total kinetic energy is the same before and after the collision.

2. In inelastic collisions, kinetic energy is not necessarily conserved, and
energy may be converted into other forms.

3. In totally inelastic collisions, kinetic energy is not conserved and the
colliding objects remain stuck together following the collision.

Momentum is generally conserved in all three types of collisions, given that
there is no intervention of an external force.
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4.2.1 Elastic collisions

The basic makeup of an elastic collision looks something like

m1 m2

v1 v2

After these balls collide,

m1 m2

v1′ v2′

We have multiple pieces of information available. We know that momentum
was conserved, so

m1v1 +m2v2 = m1v1′ +m2v2′

We also know that kinetic energy in the system is conserved, and thus

1

2
m1v

2
1 +

1

2
m2v

2
2 =

1

2
m1v

2
1′ +

1

2
m2v

2
2′

This system of equations provides us with a way to find unknown symbols
through given quantities.

4.2.2 Inelastic collisions

With inelastic collisions, we have two types: sticky and non-sticky (or totally
inelastic vs. not). In a totally inelastic collision, the masses stick together
afterwards.

m1 m2

v1 v2

becomes

20



m1 +m2

vf

Notice how we can leverage the idea that the masses move together following a
totally inelastic collision to unite the velocities. We are left with the equation

m1v1 +m2v2 = (m1 +m2)vf

With non-sticky inelastic collisions, we do not have this ability; we are just
left with the expression

m1v1 +m2v2 = m1v1′ +m2v2′

4.2.3 Two-dimensional collisions

Recall that p is a vector, and thus the conservation of momentum in more
dimensions will need to be expressed in terms of a system of two equations.

px = p′x

py = p′y

For example, in a collision that looks something like

m1
v1

m2

θ1

θ2

where the blue ball will bounce off of the red ball, each moving in their
respective colored arrows. In such a situation, we must analyze the x and
y components of our initial momentum and create a system of equations to
follow. Since the blue ball is the only initially moving component of the
system,

px = m1v1

py = 0
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We know, then, that the end components of the collision must add up to
these initial values.

px = m1v1′ cos θ1 +m2v2′ cos (2π − θ2) = m1v1

py = m1v1′ sin θ1 +m2v2′ sin (2π − θ2) = 0

4.3 Center of Mass

The center of mass for a given system is defined to be the weighted average of
the locations of masses in a system. Intuitively, it is a point on some object
or lamina with which one can balance the entire object.

rCM =

∑
miri∑
mi

=

∑
miri
M

CMx =

∑
mixi
M

, CMy =

∑
miyi
M

This naive sum method, however, will only work for discrete point masses.
What happens when we have a continuous mass distribution? We can resolve
this problem by introducing integrals and differentials.

rCM = lim
n→∞

∑i=n
i=1 miri∑i=n
i=1 mi

=

∫
rdm∫
dm

Now, what is this dm? Intuitively, dm represents a tiny piece of mass that
is being added up. Therefore, it makes sense to represent it as some uniform
density times the area in question, so we end up with

dm = λ(x)ds

dm = σ(x)dA

dm = ρ(x)dV

22



where λ, σ, ρ represent density functions. With multivariable calculus, we
can find a more complete set of general formulas for the centroids.

Mx =

∫∫
R

y · ρ(x, y)dA

My =

∫∫
R

x · ρ(x, y)dA

M =

∫∫
R

ρ(x, y)dA

(x̄, ȳ) =

(
My

M
,
Mx

M

)
4.3.1 Moving the CM

Given the equation for the position of the center of mass,

rCM =

∑
miri
M

we can differentiate to find expressions for the velocity, acceleration, momen-
tum, and force of the center of mass.

vCM =
dr

dt
=

d

dt

(∑
miri
M

)
=

∑
mivi
M

and subsequently,

aCM =
dv

dt
=

d

dt

(∑
mivi
M

)
=

∑
miai
M

By recalling that
∑
mivi is the momentum of each point in the system,

pnet = M · vCM

Fnet =
dp

dt
= M

(
dv

dt

)
= MaCM

The implication of these equations is that the center of mass of an object
moves as if it were a point mass being acted on by some net force. In addition,
we can derive the conservation of momentum for a system of particles from
these equations: if the net force on a system of particles is zero, the total
momentum of the system remains the same.
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5 Rotational Physics

Most rotational physics have direct analogues to their linear counterparts,
due to the similar derivations of formulas.

5.1 Kinematics

Angular position is defined to be the angle θ of a mass with respect to
some reference axis. Even though technically all positions are covered in
the domain [0, 2π], the angular position of an object is strictly the amount
of distance that has been traversed; for example, if a wheel starts at the
position θ = 0 and rotates 3 times back to its starting point, its position is
θ = 6π, not 0. In general, angles are measured in radians due to the nice
conversion factor:

radian =
arc length

radius

Note that angles are dimensionless.

1 revolution = 2π radians = 360 degrees

Angular displacement is the change in angular position:

∆θ = θf − θ0

Just as the linear velocity of an object is the time derivative of its position,
the angular velocity of an object is the time derivative of its angular position:

ω =
dθ

dt

and likewise, angular acceleration is the time derivative of the angular veloc-
ity.

α =
dω

dt
=
d2θ

dt2
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5.1.1 “Big 5”

The “big 5” equations for linear kinematics can be extended into rotational
kinematics.

∆θ = ω̄t

ω = ω0 + αt

θ = θ0 + ω0t+
1

2
αt2

θ = θ0 + ωf t−
1

2
αt2

ω2 = ω2
0 + 2α∆θ

Note that these equations are only valid for uniformly accelerated motion.

5.1.2 Conversions

Due to the use of radians, there are nice conversion factors between the linear
and angular counterparts of various quantities.

d = rθ

v = rω

atan = rα

Recall the expression for radial acceleration in a system of uniform circular
motion:

aradial =
v2

r
This can be converted into an expression of rotational kinematics.

v2

r
=

(rω)2

r
= rω2

5.2 Inertia

In linear physics, we use mass as a measure of inertia, or the tendency of an
object to resist motion. In rotational physics, we extend this concept and
use a new quantity, known as the moment of inertia with respect to a specific
axis of rotation, equal to

I =

∫
r2dm
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where r is the distance of a little piece of mass from the center of rotation.
For point masses, rings, and cylindrical shells rotating about their axes where
the radius from their axes does not change, the moment of inertia is simply

I =

∫
r2dm = r2

∫
dm = Mr2

In general, however, calculating the moment of inertia can be quite tricky.
We need to find an expression for dm in terms of, for instance, r and dr; to
do this, we may utilize some simple geometric tricks to find I. For example,
take a uniform disc of radius R and mass M :

More clearly,

R

dr
r

We take little “chunks” of mass out of the disc in the form of rings, or the
locus of points with equal radius from the center. Given that the disc is of
uniform density, we know that its surface mass density is constant:

σ =
M

A
=

M

πr2

With some rearrangement,
M = σA

dm = σ(dA)
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A = πr2, dA = 2πrdr

dm = σ(2πr)dr

We now have our differential piece. Putting it all together,

I =

∫ R

0

r2(σ)(2πr)dr = 2πσ

∫ R

0

r3dr

Eventually, this evaluates to
1

2
MR2

5.2.1 Parallel Axis Theorem

The parallel axis theorem is a nice way to find the moment of inertia of an
object about an axis of rotation placed somewhere other than its center of
mass. It states,

I = Icm +Md2

where d indicates the distance from the new axis of rotation to the center of
mass of the object. So, if we were to take our disc from the previous example
and instead rotate it about a point on its edge:

we can just use the parallel axis theorem to calculate I about this new axis.
We know that d = R and Icm = 1

2
MR2. Therefore,

I =
1

2
MR2 +MR2 =

3

2
MR2

5.3 Dynamics

Torque, the angular analogue to force, is the ability of a force to cause an
object to accelerate in an angular manner.

τ = r× F

27



where F is the force applied, and r is the relative position vector from the
axis of rotation to the point where torque is applied.

r

F F⊥

The magnitude of torque, then, is

|τ | = |r||F| sin θ
where θ is the angle between the position and force vectors. You’ll notice
that torque is maximized when the force applied is orthogonal to r. Torque
has units of newton meters. In computation, it’s helpful to note that

τ = rF⊥ = r⊥F

Torque can be defined as a direct analogue of Newton’s second law:

τ = Iα

5.4 Work, Energy, and Power

Analogous to the equation for work in linear mechanics,

W =

∫
τdθ

Power is still equal to the change in work over time, or

P =
dW

dt
=
τdθ

dt
= τω

Following our pattern of similar-looking equations,

KE =
1

2
Iω2

Recall our relationship between work, kinetic energy, and potential energy:

dW = dKE = −dU
Since we know that dW = τdθ,

τ =
dW

dθ
= −dU

dθ
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5.5 Momentum

The angular momentum of a point particle is defined to be

L = r× p

where r denotes the relaive position vector from the axis of rotation to the
object at hand, and p denotes its linear momentum. It is often useful to note
that the magnitude of this cross product is |r||p| sin θ.

|L| = |r||p| sin θ = |p|(|r| sin θ)

|r| sin θ is just the perpendicular component of the distance of an object to
its axis of rotation. Therefore, we don’t need to worry about performing the
entire cross product when finding the angular momentum of an object.

Vectors of angular momentum of a system of particles add up to produce
a total, “system-wide” vector for angular momentum:

Lsystem =
∑

Li

For example, a system like a seesaw of some mass M and length `,

m1

m2

will have a total angular momentum of

Lm1 + Lm2 + Lseesaw

All objects are moving at the same angular speed, so we can say that

Lm1 = Im1ω = m1

(
`

2

)2

ω

Lm2 = Im2ω = m2

(
`

2

)2

ω

Lseesaw = Iseesawω =
1

12
M`2ω
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Relationships analogous to linear mechanics are extended to rotational me-
chanics.

L = Iω

analogous to the linear definition of momentum (p = mv). In addition,

τnet =
dL

dt

This leads to an important principle of rotational mechanics: the conserva-
tion of angular momentum. If there is no net torque exerted on a system of
objects, then the total angular momentum of the system remains constant.

5.6 Rolling without slipping

For physical intuition, we can imagine some spool of thread with a radius of
R that is rolling on a surface without slipping, laying down thread.

r

θ
P

rθ

rθ

P

The translational velocity of the spool is the rate at which the thread is
laid down onto the ground, or dl

dt
. Furthermore, dl = R|dθ| by definition of

radians. Thus,

vcenter =
dl

dt
=
Rdθ

dt
= R

dθ

dt
= Rω

Differentiating this result yields an equation for acceleration:

acenter = Rα
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These equations allow us to relate the translational velocity of the center of
mass of an object with the speed at which it rotates as it moves.

It is also helpful to consider how different components of an object behave
under different types of movement.

Pure Translation

Pure Rotation

Rotation and Translation

When an object is just being translated, all of its points move at the same
velocity as the center of mass. With pure rotation, the speed of the point
depends on its proximity to the center of mass via the relationship v = rω.
For a case in which an object rolls without slipping, the velocity of the
point in contact with the surface should be 0, and all points move with the
translation velocity in addition to their individual rotational velocities.

To calculate the velocity of a single particle in the system, consider that
the center of mass is moving at some speed vCM, and that it is a distance

31



R away from the ground, or the instantaneously stationary axis of rotation.
Therefore, the angular speed of the object about that contact point is

ω =
vCM

R

We can then apply the formula v = rω, which yields an expression

v =
rvCM

R

where r is the distance of the point to the instantaenous axis of rotation,
the contact point. We can thus see that the velocity of the top part of some
wheel rolling without slipping at some speed v is 2v, and the velocity of the
bottom part is instantaneously 0.

We can calculate the kinetic energy of an object that rolls without slip-
ping:

KE =
1

2
Icontactω

2

By the parallel axis theorem,

Icontact = ICM +MR2

Substituting this into the original equation,

KE =
1

2
(ICM +MR2)ω2 =

1

2
ICMω

2 +
1

2
MR2ω2

1
2
ICMω

2 is just the rotational kinetic energy of the center of mass about the
point of contact. We can transform

1

2
MR2ω2 =

1

2
M(Rω)2 =

1

2
Mv2

CM

which is just the translational kinetic energy of the center of mass. Therefore,

KE = KEpure rotation +KEpure translation =
1

2
ICMω

2 +
1

2
Mv2

CM

5.7 Static Equilibrium

In systems without rotation, all it took to state that a system was in equi-
librium was that

Fnet = 0
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However, this statement alone is not enough to satisfy the conditions of static
equilibrium for extended bodies that may be rotating. A system can be at
rest translationally and still rotate, in which case it has non-zero torque.
Therefore, to state that a system of extended objects is in equilibrium, we
also require the condition

τnet = 0

To solve such a system, we need to satisfy both Fnet = 0 and τnet = 0.
A large part of solving torque problems is strategically choosing a con-

venient pivot point for the system, perpendicular to the plane on which the
forces act. If the net torque about one specific parallel axis is zero, then the
torque for all parallel axes is zero. We can use this “trick” to avoid dealing
with multiple unknown forces at once.

Any torque exerted by gravity acts as if the gravitational force has been
exerted at the center of mass of the object. This is not immediately obvious,
but it can be shown through integration.

τ = r× F

dτ = r× dF = r× gdm

τ =

∫
dτ =

∫
r× gdm

=

∫
rdm× g

Recall that the center of mass is defined to be

rCM =

∫
rdm

M
,

∫
rdm = rCM ·M

Substituting into the original equation, then,

τ = MrCM × g

which is just the torque exerted at the center of mass.

6 Simple Harmonic Motion

Simple harmonic motion, often abbreviated SHM, describes any oscillatory
motion that has some restoring force or torque with a displacement that can
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be modeled with sinusoidal functions. At its core, simple harmonic motion
indicates any repeating motion where the acceleration is proportional to the
displacement of the object.

To start, recall Hooke’s law:

Fnet = ma = m
d2x

dt2
= −kx

From this, we can gather
d2x

dt2
= − k

m
x

Note that this is exactly the relationship stated earlier; the acceleration of
the object, or the second derivative of position, is directly proportional by
some constant − k

m
to the object’s displacement. This is a linear second-order

differential equation. When solved, it yields two similar sinusoidal functions:

x(t) = A cos

(
t

√
k

m
+ ϕ

)

x(t) = A sin

(
t

√
k

m
+ φ

)

with some offsets ϕ and φ. Due to trigonometric identities, we can see that
if ϕ = φ − π

2
, they are equivalent expressions; therefore, the equation we

choose is not incredibly relevant when approaching a problem. This is our
justification for why sinusoidal functions show up in SHM systems.

We see similar differential equations show up for different kinds of sys-
tems, which should serve as a kind of alert. For example, some equation
like

τ = Iα = I
d2θ

dt2
− k · θ

we should recognize this as a system of simple harmonic motion. In generality,
simple harmonic motion can be expressed as

x(t) or θ(t) = A cos(ωt+ ϕ)

x(t) or θ(t) = A sin(ωt+ φ)
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for

ω =

√
k′

m
(linear)

ω =

√
k′

I
(rotational)

where k′ is the effective restoring constant in the differential equation of the
form

m
d2x

dt2
= −k′x

Given equations for ω, we note the relationship between the frequency of the
system, the period of the system, and ω.

f =
1

T
=

ω

2π

Given these relationships, we can find approximate equations describing pe-
riod and frequency for both pendulum and spring systems.

6.1 Pendulums

A pendulum undergoes rotational motion, which indicates that we must use
τ and θ.

`

θ

m

mg

Torque is the perpendicular force times the length of the pendulum, or

τ = −mg` sin θ
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The negative sign must exist to indicate that the force is restoring. To find
the effective k′, we can find the derivative of the force or the torque at the
equilibrium point: in this case, we will differentiate torque.

k′ = −dτ
dθ

∣∣∣∣
θ=0

= −(−mg` cos θ)

∣∣∣∣
θ=0

= mg`

In addition, we know that the moment of inertia of the bob about the rotation
point is just mR2 = m`2. Going back to our initial expression for ω,

ω =

√
k′

I
=

√
mg`

m`2
=

√
g

`

Therefore,

f =
1

2π

√
g

`

and T is just the reciprocal of f . For a physical pendulum,

ω =

√
mgD

I

where D is the distance from the point the object hangs from to its center.
For a torsional pendulum,

ω =

√
κ

I

where κ is the restoring torsional constant.

6.2 Springs

Before we begin, we note the relationship between the position and acceler-
ation equations for a simple harmonic oscillator.

x(t) = A sin(ωt)

v(t) = Aω cos(ωt)

a(t) = −Aω2 sin(ωt)

a(t) = −ω2x(t)

36



As noted before, the force due to a spring with constant k stretched or dilated
some distance x is

F = −kx

In addition, we know that the net force on the spring is just

F = ma

This then means that
ma = −kx

a = − k
m
x

Our relationship from earlier said that a = −ω2x. This therefore means that

−ω2 = − k
m

ω2 =
k

m

ω =

√
k

m

and all other quantities can be derived through the relationship

f =
1

T
=

ω

2π

When gravity acts on a spring (for example, one on a diagonal ramp or
hanging from a ceiling), only the equilibrium point is shifted, now mg

k
away

from the end of the spring. This is due to the idea that, when a spring is
rotated into a vertical position, the forces now acting on the body at the end
of the spring add up to

Fnet = kx−mg

Since we are finding the equilibrium position of the body, we can set Fnet

to 0, and solve algebraically for x to find the new equilibrium point. The
period and the oscillation of the vertical spring are the same as if it were a
horizontal spring.
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6.2.1 Springs in Combination

There are two different ways to configure springs in combination. The first is
a system of springs in series, where one spring is placed directly after another:

Such a system seems complicated, but we only need to consider keff; the
effective spring constant of the system. For springs in series, we can find this
through the relation

1

keff

=
∑ 1

kn
for an n spring system.

The other way to configure springs in combination is in parallel, working
next to each other on the same object.

In a system like this, spring constants add:

keff =
∑

kn

6.3 Energy

For a simple harmonic oscillator, potential energy is equal to

U =
1

2
kx2

and kinetic energy is equal to

KE =
1

2
mv2

Recall our equations for position and velocity:

x(t) = A sin(ωt)

v(t) = Aω cos(ωt)
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Therefore,

U =
1

2
k(A sin(ωt))2 =

1

2
kA2 sin2(ωt)

KE =
1

2
m(Aω cos(ωt))2 = mA2ω2 cos2(ωt)

In addition, recall that ω2 = k
m

. Substituting into our equation for KE,

KE =
1

2
mA2 k

m
cos2(ωt) =

1

2
kA2 cos2(ωt)

We can then see that

U +KE =
1

2
kA2(sin2(ωt) + cos2(ωt)) =

1

2
kA2

The total mechanical energy of a simple harmonic oscillator system will al-
ways be 1

2
kA2. Potential energy is maximized when an object is furthest

from the equilibrium point; that is, when it is at the position corresponding
to the amplitude. Kinetic energy, on the other hand, is maximized when the
object passes through the equilibrium point.

To find the maximum velocity of the object in our system, we consider
that this maximum must occur when kinetic energy is maximized; in other
words, when it is passing through the equilibrium point. Since the total
energy of the system is always constant,

1

2
mv2

max =
1

2
kA2

7 Universal Gravitation

Newton’s universal law of gravitation states that every particle of some mass
m1 experiences a gravitational force to another particle of mass m2 that is r
meters away of size

F = G
m1m2

r2

where G is the universal gravitational constant, equal to around 6.67 ×
10−11 N · m2/kg2. If there are more than two masses present in the sys-
tem, the net force of gravity on one object is the vector sum of all of the
gravitational forces exerted on that object by all of the others in the system.
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Every object has a gravitational field, or a sphere of influence that sur-
rounds it. This can be visualized as a vector field. The gravitational field for
some mass m is equal to

g = G
m

r2

This g is the acceleration due to the force of gravity from the object of mass
m.

The general equation for gravitational potential energy is

U = −GmM
r

For non-point masses, we must derive the influence of gravity for both
areas inside of and outside of the object. The internal effects of gravity for
solid and hollow objects behave differently.

Consider a solid sphere of uniform density ρ and a radius R. In addition,
consider a small mass m that is a distance r away from the center of the solid
sphere.

If r < R, we cannot simply use Newton’s universal law of gravitation to
calculate the magnitude of the gravitational force that the solid sphere exerts
on m. Instead, we need to consider only the amount of mass contained within
r, since that is the only portion that influences the gravitational force on m.
The mass contained within r is just equal to

4

3
ρπr3

and so the gravitational force exerted by that portion onto m is

Fg = G
m
(

4
3
ρπr3

)
r2

=
4

3
πGρ

This equation implies that the force of gravity actually gets stronger as r
increases, until m is at the surface of the planet, at which point the force of
gravity begins to obey the inverse-square law.

If m is instead inside of a hollow sphere, the gravitational force it expe-
riences is exactly 0.
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7.1 Orbits

To find the orbital velocity of a body in a circular orbit, we can equate the
force of gravity with the force of centripetal acceleration.

Fg = FC

GmM

r2
=
mv2

r

v =

√
GM

r

However, most orbits are elliptical. By Kepler’s second law, they obey the
law of the conservation of angular momentum.

r1 r2

v1

v2

For some satellite S of mass m (represented by the red circle) orbiting around
a planet (represented by the blue circle),

L1 = L2

I1ω1 = I2ω2

(mr2
1)

(
v1

r1

)
= (mr2

2)

(
v2

r2

)
r1v1 = r2v2

As an object gets farther away from the the body it orbits, its velocity de-
creases. Conversely, as an object moves toward the central body, its velocity
increases.

Orbits are generally governed by Kepler’s laws, which state:

1. The orbits of the planets are ellipses, and the Sun exists at one focus.
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2. A planet will sweep out equal areas in its orbits in equal periods of
time. This is equivalent to the conservation of angular momentum.

3. The square of the period is proportional to the cube of the semimajor
axes. T 2 ∝ R3.

More accurately, Kepler’s third law states

T 2 =
4π2

GMSun

R3

The vis viva equation yields the velocity at any point, given the semimajro
axis and the distance from the central body.

v2 = GM

(
2

r
− 1

a

)

7.2 Escape Velocity

The escape velocity of an object in orbit is the velocity at which it needs to
move to completely escape the orbit. To find this escape velocity, we must
consider the law of the conservation of energy:

U0 +KE0 = Uf +KEf

Since we want the object to have neither gravitational potential energy nor
kinetic energy with respect to the central body. Substituting in these quan-
tities,

−GmM
r

+
1

2
mv2

escape = 0

With some algebraic manipulations,

1

2
mv2

escape =
GmM

r

v2
escape =

2GM

r

vescape =

√
2GM

r
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