Variational Quantum Classifiers

August 1, 2022

Contents

1__Overviewl 1
LI Goald. 2
(L2 Circuit Frameworkl 2
reprocessin

2_Prep ing 2

[3 State Preparation| 2
(3.1 Feature Map|. 3
[3.2 Basic Embedding o000 3
(3.3 Amplitude Embedding]o 00000000 3

I Vatan [Cireni 4

b__Classification| 5

6 Optimizer| 5

1 Overview

Quantum machine learning, in the context being discussed, is typically just
expressed as a quantum circuit framework that processes and produces out-
put for classical data sources. This is desirable because classical machine
learning takes a large number of computational resources to accomplish a
viable output. While the toll of methods such as gradient descent may be
decreased with strategies like stochastic gradient descent, which is able to

produce an output faster in certain cases, these results are not always guaran-
teed; quantum computing provides a strategy with which we can accomplish
machine learning more effectively.

1.1 Goals

The goal of a variational classifier is simple; we take in a set of data, send
it through a parameterized operation that is then trained by an optimizer.
The fundamental circuit is shaped of simple, differentiated components that
feed each other inputs from their own outputs.

1.2 Circuit Framework

Preprocessing Feature map Model Optimizer

Update

2 Preprocessing

All that is required with preprocessing is to obtain a reliable data set and
organize it into a usable format. This is achieved through classical means
by filtering out entries by certain criteria such that the training data set
is optimal to use. In any regular dataset, the features can be ranked with
respect to its correlation with the target variable; this will allow us to choose
the most relevant features of the dataset to represent as a quantum state.

3 State Preparation

In order to allow a quantum circuit to work with classical data, one must
encode the data into a quantum state that can be utilized by the quantum
computer. The way this task can be achieved is through data embedding;
moving classical data into a quantum state in Hilbert space so that it can be
accessed and used by the quantum computer.

3.1 Feature Map

A feature map is a construct that allows the embedding of data into higher-
dimensional spaces (or quantum states). It is modeled as a parametrized
quantum circuit, where the inputs correspond to the parameters in the oper-
ation. Effectively, what we want is some data point vector 7 to correspond:

7 (7))

where ¢ denotes some function on a ground state qubit that is parametrized
by the original data point. In general terms, a feature map ¢ performs:

¢:RY = C*”

The basic motivation behind the usage of a feature map is that nonlinear
operations that are typically desired when encoding data for machine learn-
ing purposes are hard to realize in a strongly linear system like quantum
computing; the feature map shifts the burden of producing nonlinearity into
the procedure of encoding classical inputs to a quantum state.

3.2 Basic Embedding

The most naive of embedding schemes, basic embedding simply associates
each binary input with a bit-wise translation of the input into corresponding
states in the quantum system. The bitstring x = 101, for example, can be
expressed with three qubits in a quantum circuit as the state [101). If we
have a dataset D containing M entries with NV bits for each entry, then the
entry x can directly be mapped to |z). The dataset can be represented in
such a superposition:

D) = %Mmfj o)

However, for N bits, there are 2V possible states; we are wasting a lot of

possible bit-space by using basic embedding.

3.3 Amplitude Embedding

In the amplitude encoding scheme, data from each entry is encoded into the
amplitudes of a quantum state. By normalizing the N-dimensional vector

entry x, it can be represented by the amplitudes of a quantum state |v,):

Note that z,,,, = 1; this condition must be fulfilled for the state to be a valid
quantum encoding. Considering the dataset D, the amplitude embedding can
be understood as a concatenation of the inputs z("™ into one vector:

C A, 2D @ @y

where A represents the constant that normalizes the vector. The input is
understood in the computational basis as

‘D> = Z C’L‘Z>

In our approach, we will require that the size of the input N is a power
of 2 so that we may associate it directly with an amplitude vector in the
computational basis. If N is not a power of 2, we can add supplementary
entries that pad the original input. We can denote these with ¢y, ¢, - - cp,
in which all of them are 0. So, we can transform

(xl,"‘l'N)%A(xl,"‘xN,Cl,"'CD)

where A is the normalization factor,

1
A - N D
VI a3+ 7 el

4 Variational Circuit

After the data encoding, we move on to the actual variational circuit. This
circuit is some sort of block operator that depends on a set of parameters,
denoted within this writeup as a vector . There exist many different types
of variation circuits, but many of them are similar in structure to another;
they have specific components that work to achieve similar results. Typi-
cally, the variational circuit consists of parameterized rotation gates about

4

some axis; in sticking to the real domain, the R, gate will be used. Then,
entanglement gates are applied such that most of the qubits are connected
in some way to each other. The block can then be repeated some number
of times to introduce more parameters into the model. In essence, the basic
circuit looks like:

10) — 2 (6o)
|0) — Ry(61) —
o
0) — Ry(0) d

5 Classification

In between the circuit and the optimizer, we must somehow measure and
classify our quantum data into a form that can be broken down by the opti-
mizer to apply to the parameters. A very simple way to do this is to simply
measure the first qubit in the register, and then assign a binary label based
on that measurement. Another approach is to take the parity of the bits in
the measured bitstring, and assign labels with the result of the parity func-
tion. Both are viable ways to approach this problem.

We can measure our quantum circuit with a certain number of shots to obtain
a probability distribution of measuring a basis state, or in the case of a single
qubit measurement, of obtaining a |0) or a |1). Based on the distribution, we
can determine with what percent probability the statevector evolved through
the variational circuit will be measured into either class of states.

6 Optimizer

The optimizing mechanisms of the VQC are what allow the algorithm to
“evolve” and find the optimal set of parameters for the quantum machine. In
classical computing, a gradient descent algorithm is performed iteratively
to “locate” the most optimal set of parameters for a given cost function. In
essence, gradient descent is about finding the absolute minima of a function

within some bounds.
The gradient (or slope) is simply a vector of partial derivatives; or, in a
univariate case, the first derivative at a certain point. More formally,

Vfp) =

Computers cannot necessarily compute derivatives on the fly; this is why
the gradient descent algorithm itself is iterative. Intuitively, it just takes the
gradient at the current position of our “guess”, scales it by some learning
rate 7, and subtracts that value from the current position to go “down” the
slope to a new position. Mathematically, it’s expressed as

Pn+1 = Pn — ﬂvf(pn)

The graphical process can be expressed in a sort of flow chart.

- . N -
Xtrain f(Xtrain o,) =Y COSt(f(Xtrm'n . 0), y)
- os train:j
Update 6 e t(fa()%)

	Overview
	Goals
	Circuit Framework

	Preprocessing
	State Preparation
	Feature Map
	Basic Embedding
	Amplitude Embedding

	Variational Circuit
	Classification
	Optimizer

