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1 Vectors and Solid Analytic Geometry

1.1 Vectors

A vector, at its core, is an object that is described by direction and magni-
tude. In n dimensions, n pieces of information about a point on a plane are
required to uniquely describe a vector. Vectors can be described as simple
coordinates, which are assumed to have an initial point at the origin and
a terminal point at the designated location. Vectors can also be translated
from one position to another by way of translating their initial points; these
vectors are known as free vectors.

The magnitude, or length of a vector is equal to the square root of the
sums of the squares of the components, otherwise known as Euclidean dis-
tance. For an n-dimensional vector a:

|a| =

√√√√ n∑
i=1

a2
i

Two vectors a and b are considered equal if they have both equal magnitudes
and directions.

For two points P1(x1, y1) and P2(x2, y2), P1P2 = 〈x2 − x1, y2 − y1〉.

1.1.1 Vector Addition

Vectors can be added head-to-tail to form a new vector; corresponding com-
ponents are added together to form a new coordinate, or the terminal point
of the summed vector.

For example, in adding two vectors

a = 〈2, 0〉

b = 〈1, 2〉
The sum, a + b = c, looks like

a

b
c
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From this triangle, it is apparent that c = 〈3, 2〉.
Vector addition provides a nice way to express free vectors; a free vector a

that starts at the coordinate point corresponding to the vector b can simply
be described as the sum of the two vectors, or a + b.

1.1.2 Scalar Multiplication

The operation of multiplying a scalar c, c ∈ R with a vector a generates a
new vector, each component of which is c · ai. In other words, the constant
distributes over all components of a vector. The magnitude of this new vector
c · a is equal to

|c| · |a|

and its direction is either the same or direct opposite of the original vector,
depending on the sign of the constant; if the constant is negative, then the
new vector travels in the exact opposite direction.

Scalar multiplication distributes over addition as well.

c(a + b) = ca + cb

1.1.3 Unit Vectors

Unit vectors are vectors of magnitude 1, most often denoted with a hat (â).
The most elementary of these unit vectors are î, ĵ and k̂; these correspond
to 〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉 respectively. From this, it is apparent that
any 3-dimensional vector a can be denoted as a linear combination of these
elementary unit vectors:

a = a1î+ a2ĵ + a3k̂

This is yet another way of notating a vector.
Any vector can be made into a unit vector; all that needs to be done is

to divide the vector by a scalar equal to the magnitude of said vector. With
the vector a, its unit vector is

â =
1

|a|
a
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1.1.4 Dot Product

The dot product (otherwise known as the scalar or inner product) is the sum
of entry-wise multiplication performed on two vectors.

a · b =
n∑
i=1

ai · bi

The dot product is associative, commutative, and distributive. The dot
product may also be defined in terms of the angle (θ) between the two vectors.

a · b = |a||b| cos θ

The exact proof of this property is derived from the Law of Cosines.
Two angles are orthogonal iff a · b = 0. This is derived from the angle

relationship within the dot product; if the angle between them is π
2
, then

cos θ = 0.
Cauchy-Schwarz Inequality

|a · b| ≤ |a||b|

This follows from the fact that | cos θ| ≤ 1.
Triangle Inequality

|a + b| ≤ |a|+ |b|

Similar to the triangle inequality in a geometric context, this inequality sim-
ply restates the idea that no side of a triangle can be strictly longer than
the sums of the lengths of the other sides (if they were equal to each other,
we would have a degenerate triangle, or a line). In this case, the triangle
in question is the one formed by two vectors, the side that completes the
triangle being the sum.

1.1.5 Component and Projection

Vector projection of a onto b is the operation of finding some vector with a
length up to a in the direction of b. This is better explained as a diagram:
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a

b

The blue vector signifies projba, read as the “projection of a onto b”.
The formula for a vector projection is

projba =
a · b
b · b

· b

The magnitude of a projection is the component: compba.

compba = a · b

|b|

Notice how the projection is simply the component multiplied by the
reduced unit vector b̂.

1.1.6 Cross Product

The cross product (or the vector product) takes in two vectors and returns
another vector. It is convenient to use the determinant method in solving
for the cross product.

Given two vectors in R3, a, b,

a× b =

∣∣∣∣∣∣
î ĵ k̂
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
Calculating the determinant of the matrix, we find that

a× b = î(a2b3 − a3b2)− ĵ(a1b3 − a3b1) + k̂(a2b3 − b2a3)

The resulting vector is orthogonal to both a and b. This can be shown
by computing both (a × b) · a and (a × b) · b, verifying that they are both
equal to 0. The cross product is thus used often when the construction
of an orthogonal vector is necessary. Note that the cross product is not
commutative with respect to direction; we can use the right hand rule to
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determine the order in which we must multiply. We can also simply multiply
the vector by −1 if we get an answer of the wrong direction.

The magnitude of a cross product is equal to the magnitudes of the two
vectors times the sine of the angle between them.

|a× b| = |a||b| sin θ
This is, in turn, equal to the area of the parallelogram formed by the two
vectors. The volume of a parallelepiped enclosed by three vectors a, b, c is
a · (b× c).

1.2 Lines and Planes in Space

1.2.1 Lines

Suppose we have two points, P1(x1, y1, z1) and P2(x2, y2, z2). The vector
a that connects P1P2 is equal to

〈x2 − x1, y2 − y1, z2 − z1〉
However, for now, a is assumed to have a starting point at the origin, and
travel for a finite distance; to fix this, we may perform vector addition and
multiplication:

〈x, y, z〉 = 〈x1, y1, z1〉+ t〈a1, a2, a3〉
This is the vector form of a line. Notice that each component among x, y, z
correspond to different equations; we can break the vector line into the equa-
tions

x = x1 + a1t

y = y1 + a2t

z = z1 + a3t

This is the form of a parametric equation, where t is our parameter; the form
is, therefore, called parametric form. We can take this one step further; in
all three equations, we may isolate t:

t =
x− x1

a1

t =
y − y1

a2

t =
z − z1

a3
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It is then valid to state that

x− x1

a1

=
y − y1

a2

=
z − z1

a3

This is the symmetric form of a line equation.
Two lines are parallel if their direction vectors (a) are scalar multiples of

each other; they will obviously not intersect. However, there exist skew lines;
lines that will never intersect, but are nonetheless not parallel. To determine
if and where two lines `1 and `2 intersect, we can set different equations in
parametric form equal to each other. If there exists a single t that fulfills
conditions for all three systems, the lines intersect at time t; else, they do
not intersect.

1.2.2 Planes

A plane can be described by two pieces of information; a normal vector
and a point. Given a point P (x1, y1, z1) and a normal (orthogonal) vector
〈a1, a2, a3〉, the equation of a plane containing the point P orthogonal to a is

a1(x− x1) + a2(y − y1) + a3(z − z1) = 0

If we have three points P, Q, R, we can find the plane on which all three
of them lie by taking the cross product PQ×PR and then using one of the
points to find the equation of the plane.

Two planes are parallel if their normal vectors are parallel; similarly, two
planes are orthogonal if their normal vectors are orthogonal.
Intersecting Planes
We can find lines as intersections of two planes. Given

P1 : a1x+ a2y + a3z + d1 = 0

P2 : b1x+ b2y + b3z + d2 = 0

By setting one of the variables (x, y, z) to zero, we get a solvable linear
system of equations, out of which we can find a common point between the
two planes. We may also take the cross product a × b to find the direction
vector c (every line on a plane is orthogonal to the plane’s normal vector;
therefore, a line intersecting two planes must be orthogonal to both of their
direction vectors). We thus have all of the information necessary to find a
line intersecting the planes; a point and a direction vector.
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1.2.3 Distance

There are six cases of distance between different entities that we must calcu-
late.

Point - Point
For points P1(x1, y1, z1), P2(x2, y2, z2), we can just use the Euclidean
distance formula: √

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

Point - Line
For a point P (x1, y1, z1) and a line ` defined by a point Q(x2, y2, z2) and a
direction vector a, we can construct a diagram:

`

P

Q

We can project the vector QP onto the direction vector a; this would give
us one leg of a right triangle. To get the actual perpendicular distance, we
would need to apply the Pythagorean theorem using QP as our hypotenuse
and our projection as our horizontal leg.
Point - Plane
We can construct a vector from the point P (x1, y1, z1) to any point on the
plane in question, Q(x2, y2, z2). Then, we simply need to take the component
of PR to the normal vector of the plane n.
Line - Line
If the lines intersect in any way, then the distance is simply 0. If the lines
are parallel, we can choose any point on one of the lines and perform a point
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- line distance calculation. If the lines are skewed with respect to each other,
then

1. Find a plane P such that P is contains one of the lines and is parallel
to the other. We can find the normal vector of this plane by taking the
cross product of the direction vectors of the two lines.

2. Then, use the Line - Plane distance calculation.

Line - Plane
If the line is not parallel to the plane, then the distance is 0. If it is parallel
to the plane, then we can reason that every single point on the line will be
equidistant from the plane; we can simply use the Point - Plane calculation
by finding some point on the plane.
Plane - Plane
If the planes are not parallel, then the distance is 0. If the planes are parallel,
then we can use the Point - Plane calculation after finidng a point on one of
the planes.

1.3 Surfaces

When graphing more complicated three-dimensional surfaces, it is often help-
ful to sketch “traces” of the graph on the different coordinate planes. To do
this, we set one of our variables to zero at any given time and draw a trace
of what the graph looks like on the particular coordinate plane. With three
traces, we may interpolate between the sketches and draw guiding lines in
order to arrive at a full sketch or graph.

1.3.1 Cylinders

If we have some curve C and a line ` not parallel to or inside of the plane
of the curve, a cylinder is the locus of all points on the lines parallel to `
that intersect C. C is called the directrix of the cylinder, and ` is called the
ruling of the cylinder. The equations of such figures usually describe a 2-
dimensional shape in one particular plane, leaving out a third variable. The
equation y = x2, for example, describes a parabola in the x− y plane, which
is extended in the z-direction.
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1.3.2 Surfaces of Revolution

A surface of revolution is a generated by a revolving a plane curve C about
a line, most commonly one of the coordinate axes.

1.3.3 Quadric Surfaces

Extended from two-dimensional conic graphs, we may derive six surfaces and
three equations describing those surfaces. The equations take the form of

ax2 + by2 + cz2 = 0 (1)

ax2 + by2 + cz2 = 1 (2)

ax = by2 + cz2 (3)

Of course, variables may be switched around; this just yields the same surface,
just created from a different perspective. There are six surfaces created from
these equations: Cones, Ellipsoids, Hyperboloids (of one sheet or two sheets),
Paraboloids, and Hyperbolic Paraboloids.
Cone
A cone occurs whenever one of the coefficients of equation (1) is negative; for
example, x2 + y2 − z2 = 0 describes a cone. Two coefficients being negative
yields what is essentially the same equation, since we may multiply the entire
equation by a negative scalar. All of the coefficients cannot be positive at
once; three positive numbers cannot add up to zero, excluding the case where
(x, y, z) = (0, 0, 0); this is the degenerate case.
Ellipsoid
An ellipsoid takes the form of equation (2) when all coefficients are positive.
This graph can be derived from the traces of the surface on each of the
coordinate planes, which turn out to be ellipses.
Hyperboloid of 1 sheet
A hyperboloid of 1 sheet occurs with equation (2) when one of its coefficients
is negative.
Hyperboloid of 2 sheets
A hyperboloid of 2 sheets occurs with equation (2) when two coefficients are
negative.
Paraboloid
A paraboloid occurs with equation (3) when all coefficients are positive.
Hyperbolic Paraboloid
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A hyperbolic paraboloid occurs with equation (3) when one of the constants
in front of the squared term is negative.

2 Polar Coordinates in Three Dimensions

2.1 Cylindrical Coordinates

Cylindrical coordinates represent a single point with a tuple (r, θ, z). It can
be thought of as an elevation of the 2-dimensional polar coordinate system,
with a rectangular z coordinate to represent height.

1. r is the radius of the polar coordinate for the projection of a point P
onto the xy-plane.

2. θ is the angle between the x-axis and the direction of OP ′, where P ′ is
the projection of P onto the xy-plane.

3. z is the elevation of P ′, acting as a rectangular coordinate.

z

θ
y

x

r

z

P

Rectangular and cylindrical coordinates have the relations:

x = r cos θ

y = r sin θ

z = z

tan θ =
y

x
r2 = x2 + y2
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2.2 Spherical Coordinates

In spherical coordinates, a point is represented by the tuple (ρ, θ, φ) where

1. ρ is distance between the origin and the point |OP |

2. θ is the angle between the x-axis and OP ′ (where P ′ is the projection
of P onto the xy-plane)

3. φ is the angle betweeen the positive z-axis and OP

z

θ
y

x

ρ
φ

P

We have the relations:

ρ2 = x2 + y2 + z2

r = ρ sinφ

x = r cos θ = ρ sinφ cos θ

y = r sin θ = ρ sinφ sin θ

z = ρ cos θ

3 Vector Valued Functions

3.1 Definitions

A vector-valued function takes in some parameter t and converts it into a
vector.

r(t) : R→ Rn

14



where n indicates the number of dimensions, which is commonly 3. These
functions look something like

r(t) = 〈f(t), g(t), h(t)〉 = f(t)̂i+ g(t)ĵ + h(t)k̂

3.1.1 Curves

A vector-valued function can represent some curve in space.

C = {(x(t), y(t), z(t)) | t ∈ R}

A curve is smooth within an interval if none of its derivatives ever reach 0
simultaneously. That is, there is no t within an interval (a, b) within which
f ′(t) = g′(t) = h′(t) = 0.
A curve is considered closed if, for two points a, b, r(a) = r(b).

3.1.2 Arclength

The arclength of some smooth curve C = (f(t), g(t), h(t)) in the interval [a, b]
is

` =

ˆ b

a

√
(f ′(t))2 + (g′(t))2 + (h′(t))2dt

Note that this is the integral of the magnitude of the vector 〈x′, y′, z′〉.

3.2 Limits, Derivatives, Integrals

3.2.1 Limits

lim
t→a

r(t) =
[
lim
t→a

f(t)
]

+
[
lim
t→a

g(t)
]

+
[
lim
t→a

h(t)
]

From this information, it is necessarily the case that the derivative and in-
tegral of r(t) are performed component-wise, as they depend on summation
(which is a component wise operation) and the limit (also a component wise
operation). Limit properties from single variable calculus carry over:

lim
t→a

[u(t) + v(t)] = lim
t→a

u(t) + lim
t→a

v(t)

lim
t→a

[u(t)× v(t)] = lim
t→a

u(t)× lim
t→a

v(t)

lim
t→a

[u(t) · v(t)] = lim
t→a

u(t) · lim
t→a

v(t)
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3.2.2 Differentiation

Many of the same properties for differentiation in single variable calculus
carry over to vector-valued functions.

d

dt
(u(t) + v(t)) = u′(t) + v′(t)

d

dt
(cu(t)) = cu′(t)

d

dt
(u(t) · v(t)) = u′(t) · v(t) + u(t) · v′(t)

d

dt
(u(t)× vt) = u′(t)× v(t) + u(t)× v′(t)

3.2.3 Integration

Both parts of the Fundamental Theorem of Calculus apply to vector-valued
functions. We know that

ˆ
u(t)dt =

〈ˆ
f(t)dt,

ˆ
g(t)dt,

ˆ
h(t)dt

〉
Properties for integration are extended to vector valued functions.

3.3 Unit Tangent and Normal

For a vector valued function r(t), there exists both a unit normal and unit
tangent vector for any point at an arbitrary time t.

The unit tangent vector travels exactly one unit in the tangent direction
of a curve at a point, while the unit normal vector travels exactly one unit
in a normal direction to the curve (and the tangent) at a given point.

Therefore, the unit tangent is given by

T(t) =
1

|r′(t)|
r′(t)

and the unit normal is given by

N(t) =
1

|T′(t)|
T′(t)

16



3.4 Curvature

The curvature K of some curve is defined to be the change in the angle
between the unit vector i and the tangent vector at the point T(s), where s
is a parameter corresponding to the arclength. In other words,

K =

∣∣∣∣dθds
∣∣∣∣

The curvature of a circle with a radius a is always a constant 1
a
. Intuitively,

this makes sense because a circle has less curvature at a given point if its
radius is larger, and vice versa.

We know that

s(x) =

ˆ x

a

√
1 + (y′)2dx

θ = arctan y′

and we know, through the chain rule, that

dθ

dx
=
dθ

ds

ds

dx

Consquently, the curvature of a graph of a single-variable function is

K =

∣∣∣∣∣ y′′

(1 + (y′)2)
3
2

∣∣∣∣∣
Similarly, for a curve defined with two functions such that x = f(t) and
y = g(t),

K =

∣∣∣∣∣ f ′g′′ − g′f ′′

((f ′)2 + (g′)2)
3
2

∣∣∣∣∣
K is also defined as

K = |T′(s)|
where s is the arclength parameter.

3.5 Acceleration

Some reminders:

1. Speed = |r′| = |v| = v = ds
dt
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2. T(t) = r(t)′

|r′(t)| , and T(t) = T(s) because the tangent is invariant to
parameterization.

3. K :=
∣∣ d
ds

T
∣∣

4. K ·N(s) = d
ds

T

5. K = 1
ρ

The acceleration, or the second derivative of r(t) can be broken up into
tangential and normal parts.

r′′(t) = a =
dv

dt
T +

v2

ρ
N

where ρ is the radius of curvature at a point. Essentially, this equation splits
up the acceleration into “speeding up” and “turning” parts. For brevity, we
may state

a = aTT + aNN

where aT and aN are the tangential and normal parts of the acceleration,
respectively.

We can derive computable equations for aT and aN .

aT =
r′ · r′′

|r′|

aN =
|r′ × r′′|
|r′|

We can also derive that
|a|2 = a2

T + a2
N

This equation, intuitively, makes sense: aT and aN form the horizontal and
vertical parts of the acceleration at some instant, and therefore, the actual ac-
celeration would arise from the pythagorean theorem with these components.
In addition, we can derive an equation for K for three dimensions:

K =
|r′ × r′′|
|r′|3
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4 Derivatives of Multivariable Functions

Multivariable functions are, in a way, the opposite of vector valued functions;
they take in multiple independent values and return a single value as an
output. Formally, a multivariable f exists such that

f : D → R, D ⊆ Rn, R ⊆ R

There are several ways to sketch these functions. We may calculate traces of
the graph in some space and connect the spaces between them to generate
some image, or, we may use level curves.

A level curve is a locus of points with a fixed output value. They are
sketched as multiple curves on a single surface, much like a topographical
map. To sketch a level curve of a function f(x, y), we can set the function
to some function k and compute equations for the graph in a single-variable
context for each different k.

4.1 Limits and continuity

As everything in single variable calculus depends on limits, everything in
multivariable calculus also depends on limits. In multivariable calculus, a
limit is visualized as any path (curve) moving towards a specific point on a
domain space that may correspond to a value on the output space. In single
variable calculus, limits are formally defined with epsilon delta proofs; the
same idea exists in multivariable calculus, but the “distance” of δ away from
the point is instead notated as Bδ (a ball of radius δ).

Let a multivariable function f be defined near some point (a, b), but
possibly not at the point itself. The limit as f(x, y) approaches (a, b), is L

lim
(x,y)→(a,b)

f(x, y) = L

if for every ε > 0 there is a corresponding δ > 0 such that if

0 <
√

(x− a)2 + (y − b)2 < δ

then
|f(x, y)− L| < ε

In calculating these limits, we may first plug the points in. If that does
not yield an answer, we can “choose” curves to travel along in order to find
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the limit. For example, we may choose a curve such that y is always 0 and
x is the changing value, turning our operation into a single-variable limit.
However, caution is necessary; if two different curves to a point produce
different limiting values, then the limit does not exist for that function at
that point.

4.2 Partial Derivatives

Recall that the definition of a derivative in single variable calculus is stated
as

dy

dx
= f ′(x) = lim

∆x→0

f(x+ ∆x)− f(x)

∆x
This same notion is carried over into a multivariable system.

∂f

∂x
= fx = lim

∆x→0

f(x+ ∆x, y)− f(x, y)

∆x

∂f

∂y
= fy = lim

∆y→0

f(x, y + ∆y)− f(x, y)

∆y

This definition extends to multiple dimensions; we are not limited to just
two.
Note that when we take a partial derivative with respect to x, we are holding
the y aspect fixed; the same goes for a partial derivative with respect to y.
Thus, it is fair to say that when we take a partial derivative of some variable,
we hold all of the other variabes constant; we may treat them as such when
computing these derivatives. Taking a partial derivative works with the same
techniques as it does in single calculus, like the product and quotient rules.

Taking higher derivatives works the same way, with the added bonus
that we can take higher derivatives with respect to different variables. Since a
derivative is a function-to-function operation, we simply take another deriva-
tive of our resulting expression.

4.2.1 Clairaut’s theorem

Clairaut’s theorem states that, for a multivariable function f(x, y), if f and
all of its first and second order derivatives are continuous on some region R,
then

fxy = fyx

on R.
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4.3 Differentials and Increments

4.3.1 Increments

For some w = f(x, y), let ∆x and ∆y be the increments of x and y, respec-
tively. Then,

∆w = f(x+ ∆x, y + ∆y)− f(x, y)

Effectively, ∆w is the change in w if its inputs are shifted by some ∆x, ∆y.
Now, calculating ∆w is challenging for a multitude of reasons, especially if
done by hand. Thus, increments are approximated by differentials.

We can first think about increments from a single variable perspective.
Let

∆u = f(x0 + ∆x)− f(x0)

This looks similar to the definition of a single variable derivative, so we can
divide by ∆x on both sides and take a limit:

lim
∆x→0

∆u

∆x
= lim

∆x→0

f(x0 + ∆x)− f(x0)

∆x
= f ′(x0)

lim
∆x→0

[
∆u

∆x
− f ′(x0)

]
= 0

We can abstract the inner contents of this limit away; call it some ε.

ε =
∆u

∆x
− f ′(x0)

Thus,
∆u = f ′(x0)∆x+ ε∆x

This is an alternate definition for an increment in a single variable context.
There is no reason why the derivation of this definition should be limited
to a single variable system; we can perform a similar process, but with two
variables instead, and we arrive at the definition

∆w = fx(x0, y0)∆x+ ε1∆x+ fy(x0, y0)∆y + ε2∆y

where ε1 and ε2 are simply extensions of the singular ε definition we had
earlier. Keep in mind that these εs are functions of ∆x, ∆y and have a limit
of 0 as (∆x, ∆y)→ (0, 0).
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4.3.2 Differentials

In single variable calculus, we defined the differential of a function y as

dy = f ′(x)dx

where dx is equal to the increment ∆x, and dy is approximately equal to ∆y
for small values. In multivariable calculus, the differential of a function w is

dw = fx(x, y)dx+ fy(x, y)dy

where, again, dx = ∆x and dy = ∆y.
There are several useful statements about continuity that fall out of this

definition.
If w = f(x, y), then f is differentiable at (x0, y0) if it can be expressed in

our incremental form from earlier,

∆w = fx(x0, y0)∆x+ fy(x0, y0)∆y + ε1∆x+ ε2∆y

If w = f(x, y), and fx and fy are continuous on a rectangular region R,
then f is differentiable on R.

If f is differentiable at (x0, y0), then f is continuous at x0, y0.
The same definition of differentials extends to three dimensions:

df = fxdx+ fydy + fzdz

4.4 Chain Rule

In single variable calculus, the chain rule states that

dy

dx
=
dy

du
· du
dx

or simply
y(u(x)) = y′(u(x))u′(x)

In multivariable calculus, for some function w = f(u, v) where u = g(x, y)
and v = k(x, y),

wx = wu · ux + wv · vx
wy = wu · uy + wv · vy
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or
∂w

∂x
=
∂w

∂u
· ∂u
∂x

+
∂w

∂v
· ∂v
∂x

∂w

∂y
=
∂w

∂u
· ∂u
∂y

+
∂w

∂v
· ∂v
∂y

This can be extended to multiple dimensions: for some w that is made
up of n variables u1, u2, · · ·un that are, in turn, each made up of m variables
x1, x2, · · ·xm with continuous first partial derivatives, then

∂w

∂xj
=

n∑
i=1

∂w

∂ui
· ∂ui
∂xj

4.4.1 Implicit Differentiation

Implicit differentiation, like many other things from single variable calculus,
makes an appearance in multivariable calculus.

If some function F (x, y) = 0 implicitly defines a function of one variable,
y = f(x), then

dy

dx
= −Fx(x, y)

Fy(x, y)

Similarly, if some function F (x, y, z) = 0 implicitly defines a function of
two variables z = f(x, y), then

∂z

∂x
= −Fx(x, y, z)

Fz(x, y, z)

∂z

∂y
= −Fy(x, y, z)

Fz(x, y, z)

4.5 Directional Derivatives

Instead of thinking of partial derivatives as operations along our coordinate
axes, we can think of them as operations along the unit vectors i, j, k
and so forth. If this is so, then there is no reason we shouldn’t be able to
take derivatives along other paths, or vectors, of direction. The directional
derivative of a function f along some unit vector u = u1i + u2j is defined as

Duf(x, y) = lim
t→0

f(x+ tu1, y + tu2)− f(x, y)

t
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This limit seems like a pain to compute. So, we can do some simplification.
Define some function g(t) such that

g(t) = f(x+ tu1, y + tu2)

Recall, also, the alternate definition of a derivative that specifies a point.

g′(0) = lim
t→0

g(t)− g(0)

t− 0

It follows that

g′(0) = lim
t→0

f(x+ tu1, y + tu2)− f(x, y)

t
= Duf(x, y)

We can also write g(t) as a composition of different functions, say, r, v, where

r = x+ tu1, v = y + tu2

From the chain rule, this becomes

g′(t) = fr(r, v)
du

dt
+ fv(r, v)

dv

dt

which is equal to
fr(r, v)u1 + fv(r, v)u2

Recall that the directional derivative is equal to the above equation evaluated
at 0: then, r = x and v = y, and the formula becomes

fx(x, y)u1 + fy(x, y)u2

Therefore, the direction derivative of a function along the unit vector u is

Duf = fxu1 + fyu2

Note that this is equal to taking a dot product:

〈fx, fy〉 · u

We’ll introduce a new operation, ∇. This symbol, the nabla (pronounced
‘del’) takes the gradient of the function f .

∇ =

〈
∂

∂x
,
∂

∂y

〉
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∇f(x, y) = 〈fx, fy〉

It follows that
Duf = ∇f · u

The maximum value of Duf at some point P occurs in the direction of
∇f evaluated at P ; this maximum value is |∇f(x, y)|.

Similarly, the minimum value of Duf (or the ‘most negative’ value) occurs
in the opposite direction of ∇f , or in the direction of −∇f . This maximum
value is also |∇f(x, y)|.

Traveling on along the path orthogonal to ∇f will yield an unchanging
value of Duf .

4.6 Tangent Planes

Given a surface, S (defined by some function F (x, y, z) = 0), and a point on
that surface, P0, there exists a line normal to S at P0 (given that S is not
just a singular point). Since a line defines a unique plane perpendicular to
that line, the plane defined by the normal line is tangent to S at P0.

Given that F (x, y, z) has continuous first partials and that P0 is a point
on the surface defined by F , then the vector ∇F |P0 is normal to S at P0.

In equation form, this line is

r0 + t · ∇F |P0

Even further, the equation for a tangent plane to S at P0(x0, y0, z0) is

∇F |P0 · 〈x− x0, y − y0, z − z0〉 = 0

or
∇F |P0 · (r− r0) = 0

An important thing to note is that ∇F cannot be 0.

4.7 Extrema

Analogous to single variable critical points, multivariable critical points are
locations in which the components of ∇F are all either 0 or do not exist.
Local extrema must occur at these critical points, but critical points do not
necessarily have to be extrema. On the other hand, absolute extrema do
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not necessarily have to occur at these critical points; they can occur on the
boundaries of their domains as well.

To solve problems where the requirement is to find absolute extrema on
some rectangular domain, we can construct a collection of possible locations
of extrema; the first points in the list should be critical points and points
on the vertices of the domain. We can, in addition, limit the multivariable
function to some boundary curve, which turns the function into a single
variable function that can be optimized with single variable strategies.

4.7.1 Classifying Extrema

Given that f has continuous second partial derivatives on some rectangular
region Q, define a function g(x, y) such that

g(x, y) = fxxfyy − [fxy]
2

for all pairs (x, y) in Q. For some critical point (a, b) in Q, then

1. (a, b) is a local maximum if g(a, b) > 0 and fxx(a, b) < 0.

2. (a, b) is a local minimum if g(a, b) > 0 and fxx(a, b) > 0.

3. (a, b) is a saddle point if g(a, b) < 0.

4. (a, b) is an inconclusive point if g(a, b) = 0.

4.8 Lagrange Multipliers

Lagrange multipliers are a more efficient way to solve optimization problems,
in which we are tasked with finding the optimum of some equation subject
to a constraint.

For a function f and a constraint equation g, if f has an extremum at
(x0, y0) and ∇g(x0, y0) 6= 0, then there exists some number λ such that

∇f(x0, y0) = λ∇g(x0, y0)

This number, λ, is known as the Lagrange multiplier.
Out of this method, we receive a system of three equations, for which we

can solve for three variables: x, y, and λ.

1. fx(x, y) = λgx(x, y)
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2. fy(x, y) = λgy(x, y)

3. g(x, y) = C

5 Double Integration

In single-variable calculus, the formal definition of a definite integral was the
sum of partitions as the limit of the largest partition size approaches zero.

lim
||∆||→0

∑
i

f(wi)∆xi

In a space of two variables, integration follows the same principle of dividing
up the area of the domain.

There are two kinds of regions that can be considered:

1. Type I regions are bound between two constants in the x direction
and two functions of x, g1(x) and g2(x).

2. Type II regions are bound between two constants in the y direction
and two functions of y, h1(y) and h2(y).

Any region R can be decomposed into regions of one or the other type. The
region can be divided into little rectangles of area with something like a grid.
Then, the totality of these closed rectangles that all reside entirely within R
are called the inner partition of R.

The analogue of a Riemann sum in two dimensions is, then, the product
of the components of the inner partition of R with the value of f at some
location within the rectangle.

n∑
i=1

f(ui, vi)∆Ai

where Ri contains (ui, vi) and ∆Ai is the area of Ri.
We introduce a new symbol known as the double integral of f over R,

denoted: ¨
R

f(x, y)dA
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This is defined to be the limit as the norm of the largest such partition Ri

approaches 0: ¨
R

f(x, y)dA = lim
||P ||→0

∑
i

f(ui, vi)∆Ai

If the double integral of f over R exists, then f is integrable over R. The
volume V of a solid that lies under a function z = f(x, y) over the region R
is, in addition, equal to the double integral:

V =

¨
f(x, y)dA

Double integrals have the following properties:

¨
R

cf(x, y)dA = c

¨
R

f(x, y)dA (4)
¨
R

[f(x, y) + g(x, y)]dA =

¨
R

f(x, y)dA+

¨
R

g(x, y)dA (5)
¨
R

f(x, y)dA =

¨
R1

f(x, y)dA+

¨
R2

f(x, y)dA (6)

¨
R

f(x, y)dA ≥ 0 (7)

Equation (6) is only valid if R is the union of the nonoverlapping regions R1

and R2. Equation (7) is only valid if f(x, y) ≥ 0 throughout R.
However, you’ll notice that evaluating these double integrals directly is

almost impossible, which is why we require the use of other methods for the
actual computation.

5.1 Iterated Integrals

Just like we have partial differentiation, we have a concept known as partial
integration. For example, consider the expression

ˆ b

a

f(x, y)dy

This simply means that, while x is kept constant, we are integrating with
respect to y between the bounds of a and b. Therefore, to find the area of a
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region in a 2-D space, we can place one ‘partial integral’ inside another:

ˆ b

a

ˆ d

c

f(x, y)dydx

In this case, we would evaluate the inner integral first, and then evaluate
the resulting expression with respect to the outer integral — this approach
is known as iterated integration.

In addition, we can deal with regions of types I and II with iterated
integration. For a type I region,

ˆ b

a

ˆ g2(x)

g1(x)

f(x, y)dydx

would give the volume of the solid defined by f and the type I region. Notice
how the inner integral is computed with respect to y, because the bounds on
the integral are functions of x. Because we expect to get a constant out of
our evaluation (in calcuating volume), the function bounds cannot be in the
outer integral. Similarly,

ˆ d

c

ˆ h2(x)

h1(x)

f(x, y)dxdy

would yield the volume of the solid defined by f over a type II region.
Iterated integrals make the computation of double integrals much, much

easier: ¨
R

f(x, y)dA =

ˆ b

a

ˆ g2(x)

g1(x)

f(x, y)dydx

for a region of type I and

¨
R

f(x, y)dA =

ˆ d

c

ˆ h2(x)

h1(x)

f(x, y)dxdy

for a region of type II.

5.1.1 Fubini’s Theorem

Some double integrals cannot be solved in the order of integration they are
given in; sometimes, switching the order of integration is required. Fubini’s
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theorem, which states that double integrals can be expressed as iterated
integrals, implies that the order of integration can thus be switched if a
region R of a specific type can be converted into the other. For example,

ˆ 2

0

ˆ 2

x

ey
2

dydx

cannot be computed, as the antiderivative of ey
2

does not have a closed form
answer. However, we can draw out the region itself:

g1(x) = x

g2(x) = 2

x = 2

We notice that this region of type I can be expressed as a region of type II
instead:

h1(y) = y
h2(y) = 0

y = 2

y = 0
x = 2
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This second image corresponds with the iterated integral

ˆ 2

0

ˆ y

0

ey
2

dxdy

which we can evaluate with a closed form.

5.2 Moments, Mass, and Moments of Inertia

Double integrals are useful in computing the centroids of certain lamina (sur-
faces). Given some lamina that is defined by the regionR with an area density
function given by ρ(x, y), the mass of the lamina is given by the expression

M =

¨
R

ρ(x, y)dA

The computation of this double integral, of course, almost always requires a
conversion to an iterated integral system.

In physics, the moment of an object refers to the turning effect of a force
about its balance point, its centroid. The moment of some point P is the
product of its distance to its balance point along some axis and its density.
So a moment of a lamina with respect to the x axis is expressed as

Mx =

¨
yρ(x, y)dA

and similarly, for the y axis,

My =

¨
xρ(x, y)dA

These quantities use the signed distance with respect to each axis. It is worth
mentioning that symmetry can be used extensively in these calculations,
as regions that are symmetric about an axis may present opportunities for
simplification.

The balance points with respect to each axis of the lamina are the mo-
ments divided by the mass.

x =
My

M

y =
Mx

M
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The coordinates of the centroid of the lamina, therefore, are(
My

M
,
Mx

M

)
The moment of inertia of an object refers to its resistance against being

rotated (the analogue of mass in a rotational context). The moment of inertia
of the lamina with respect to the x axis is

Ix =

¨
R

y2ρ(x, y)dA

and similarly,

Iy =

¨
R

x2ρ(x, y)dA

With respect to the origin,

IO =

¨
R

(x2 + y2)ρ(x, y)dA = Ix + Iy

5.3 Polar Integration

On a 2-D surface, a polar region is defined by angles, which are represented
as rays that come from the “pole”, or the origin of the polar graph, and radii,
which are usually found as functions of angles. For example, the most ele-
mentary polar functions are circles, where the radius is defined as a constant:

r = 1

r = 2.5
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Defining angle bounds on a polar region is like cutting a wedge-shaped slice
out of a cylindrical cake.

θ = π
3

θ = π
6

To perform double integration given polar bounds, it seems tempting to
simply replace x and y with r and θ (dxdy → drdθ). However, doing so
would yield a rectangular region, and not the polar slice that we need.

r

θ

6=

θ = π
2

θ = 0

You’ll notice that, for polar regions, the area of each “block” of the partition
gets larger, so we need some extra factor to account for this dilation. As it
turns out, this factor is just r. So, a double integral of some polar region A
will have the differential piece

dA = rdrdθ = rdθdr
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depending on the chosen order of integration. This gives us a change of
variable formula:

¨
R

f(x, y)dA =

ˆ θ2

θ1

ˆ g2(θ)

g1(θ)

f(r cos θ, r sin θ)r dr dθ

Or, in a similar vein,

¨
R

f(x, y)dA =

ˆ r2

r1

ˆ h2(r)

h1(r)

f(r cos θ, r sin θ)r dθ dr

6 Triple Integration

Given some 3-D regionQ, it is possible to define triple integration in a manner
that is similar to double integration.

z

y

x

Q

We can take tiny partitions of rectangular prisms and add up their respective
values, which leads us to the notion of a Riemann sum of a partition:

n∑
i=1

f(ui, vi, wi)∆Vi

for the ordered tuple (ui, vi, wi) representing a point in Qi. Taking a limit
yields the formal definition of a triple integral over the region Q:

˚
Q

f(x, y, z)dV = lim
||P ||→0

∑
i

f(ui, vi, wi)∆Vi
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Furthermore, we can extend Fubini’s theorem:

˚
Q

f(x, y, z)dV =

ˆ b

a

ˆ g2(x)

g1(x)

ˆ h2(x,y)

h1(x,y)

f(x, y, z) dz dy dx

or something of a similar form. Now, how do we define the bounds on the
iterated integrals? It’s often helpful to think of the 3-D region as the end
result of a definite integral inside of a double integral:

˚
Q

f(x, y, z)dV =

¨
R

[ˆ h2(x,y)

h1(x,y)

f(x, y, z)dz

]
dA

In this case, R would encompass the entire “shadow” of our figure onto the
xy plane, or the largest area a cross section (“slice”) along the z direction
would attain.

6.1 Physics Applications

6.1.1 Moments and Mass

The mass of a 3-D object with density defined as ρ(x, y, z) is equal to

M =

˚
Q

ρ(x, y, z)dV

In addition, we define the moments of the solid with respect to specific co-
ordinate planes, rather than just the axes as we did in double integration.

Mxy =

˚
Q

zρ(x, y, z)dV

Mxz =

˚
Q

yρ(x, y, z)dV

Myz =

˚
Q

xρ(x, y, z)dV

Doing so allows us to find the center of mass of our object, which would be
the coordinate (

Myz

M
,
Mxz

M
,
Mxy

M

)
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6.1.2 Moments of Inertia

Moments of inertia are defined with respect to specific coordinate axes.

Iz =

˚
Q

(x2 + y2)ρ(x, y, z)dV

Iy =

˚
Q

(x2 + z2)ρ(x, y, z)dV

Ix =

˚
Q

(y2 + z2)ρ(x, y, z)dV

6.1.3 Gyration

The radius of gyration is a constant d such that

I = d2M

More concisely,

d =

√
I

M

6.2 Cylindrical Coordinates

Recall that a cylindrical coordinate system simply just adds a z coordinate
to a 2-D polar system. It is described by the ordered tuple

(r, θ, z)

where r is the radius on the 2-D plane, θ is the angle from the horizontal,
and z is the elevation.

(x, y, z)⇒ (r cos θ, r sin θ, z)

Performing a triple integral in a region defind by cylindrical coordinates is
fairly simple; all we need to do is add a definite integral to our 2-D polar
integral. ¨

R

[ˆ z2

z1

f(r, θ, z)dz

]
(rdrdθ)

dA

Setting up integrals in this kind of system is particularly helpful for cylinder-
adjacent regions.
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6.3 Spherical Coordinates

Spherical coordinates operate with a single radius (ρ), an angle of “sweep”
(θ), and an angle of elevation (φ) from the vertical.

z

θ
y

x

ρ
φ

P

(x, y, z)⇒ (ρ cos θ sinφ, ρ sin θ sinφ, ρ cosφ)

Analogous to the way we needed a factor of r in our polar double integral,
we need a factor of ρ2 sinφ to perform a coordinate change from cartesian to
spherical coordinates. So, for a shape (sphere) like

Q

˚
Q

f(ρ, θ, φ)dV =

ˆ ρ2

ρ1

ˆ g2(ρ)

g1(ρ)

ˆ h2(ρ,θ)

h1(ρ,θ)

f(ρ, θ, φ)ρ2 sinφ dφ dθ dρ

Spherical coordinates are useful for sphere and cone-adjacent shapes.
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7 Integral Manipulations

7.1 Surface Area

Recall that some curve C is represented as a parameterized vector with a
single parameter,

r(t) = 〈x(t), y(t), z(t)〉

Analogously, a surface S is represented as a parameterized vector with two
parameters,

r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉

Note that surfaces defined as equations, like quadric surfaces, have simply
undergone the process of eliminating the parameter, like we can do with
parametric equation in 2-D; every surface can be described as a parameterized
vector, but not every parameterized vector surface can be expressed as a
single equation. We can introduce the concept of taking partial derivatives of
vectors; as the vector for a surface is now composed of multivariable functions,
we can take partial derivatives, which are still component-wise operations.

ru = 〈xu(u, v), yu(u, v), zu(u, v)〉

rv = 〈xv(u, v), yv(u, v), zv(u, v)〉

The surface area of a curve is given by the expression

¨
R (u,v)

|ru × rv|
(dudv)

dA

Intuitively, this can be thought of as summing up tiny pieces of parallelogram
formed by the partials of the parameterized vector surface at a given point.

7.2 Change of Coordinates

There exist situations in which it is more convenient to integrate in a different
coordinate system. For a given expression, we can define a transformation T
such that

u = h(x, y)

v = k(x, y)
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where u, v are the bases of our new coordinate system. Recall from single-
variable calculus the idea of a u-sub, often employed to simplify complicated
integrals. ˆ

f(x)dx⇒
ˆ
f(g(u))g′(u)du

The scaling factor of some g′(u) was justified by the idea of using differentials
to “dilate” the area we were integrating with respect to; this scaling factor
is the motivation behind seeking a “scaling factor” for multivariable changes
of coordinates. For the inverse transformation of T (T−1)

x = f(u, v)

y = g(u, v)

the Jacobian is defined as the determinant of the matrix containing the first
partials of f and g:

JT =
∂(f, g)

∂(u, v)
=

∣∣∣∣fu fv
gu gv

∣∣∣∣ = fugv − fvgu

The Jacobian serves as the specific scaling factor for our double integral.¨
R

F (x, y)
(dxdy)

dA ⇒
¨
R

F (f(u, v), g(u, v))JT
(dudv)

dA

Note that, to perform an integral with a transformation in coordinates, T
must be a 1-to-1 operation. Bounds should be kept in mind when performing
these transformations; often, it is helpful to sketch out and graph specific
curves and points as the transform from the xy plane to the uv plane.

We may also perform transformations in three dimensions. For a trans-
formation

x = f(u, v, w)

y = g(u, v, w)

z = h(u, v, w)

the corresponding Jacobian is the following expression:

JT =

∣∣∣∣∣∣
fu fv fw
gu gv gw
hu hv hw

∣∣∣∣∣∣
which we may insert in front of our differential piece in computing the trans-
formed integral.
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8 Vector Calculus

8.1 Vector Fields

A vector field is defined as a relation

F : Rn → Rn

F = 〈M(x, y, z), N(x, y, z), P (x, y, z)〉
Essentially, it “assigns” every point in a space a specific vector, with an initial
point at the specified location. For example, the field

F = 〈−y, x〉

may look something like

and so on and so forth. There are a couple of important operations that we
can perform with vector fields. Recall the definition of del:

∇ =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
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For a vector function F, we may dot or cross with ∇ (though the cross
product is only defined in 3 and 7 dimensions). The operation

div F = ∇ · F

is defined as the divergence of F: intuitively, it measures the “explosiveness”
of the vector field about some central point, usually the origin.

curl F = ∇× F

is defined as the curl of F, indicating how much the vector field “spins” about
some location.

A conservative vector field is a field for which there exists some function
f such that ∇f = F. For example,

F = 〈y, x〉

is a conservative vector field because it is the gradient of the function

f = xy + C

for any arbitrary constant.

8.2 Path Integrals

Path integrals, also known as line and contour integrals, is the concept of a
tradition integral instead performed on some arbitrary curve, instead of the
x axis. For an f(x, y) defined on a curve C, we can divide the curve into small
arcs of length ∆s. By choosing a point within each subarc and multiplying
by the value of the function, we come to the sum∑

f(ui, vi)∆si

which, after taking a limit as ||∆si|| goes to 0, yields the integral of f over
the curve C. ˆ

C
f(x, y)ds = lim

||∆||→0

∑
i

f(ui, vi)∆si

From single variable calculus, we know that for a smoothly parameterized
curve,

s =

ˆ b

a

√
[g′(t)]2 + [h′(t)]2dt
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Thus, we can see that

ds =
√

[g′(t)]2 + [h′(t)]2dt

and so ˆ
C
f(x, y)ds =

ˆ b

a

f(g(t), h(t))
√

[g′(t)]2 + [h′(t)]2dt

Notice that this can be written in vector notation as well:
ˆ
C
f(x, y)ds =

ˆ b

a

f |r(t) · |r′(t)|dt

We can add path integrals, as well: for a piecewise smooth curve C consisting
of a finite number of smooth curves C1, C2, . . . , Cn, then the path integral over
the entire curve is the sum of the path integrals within each of its parts.

However, this method of taking path integrals of scalar functions is ex-
tremely limiting, and needing to take the square root in the differential piece
can introduce computational challenges. Instead, there exists a more general
definition of a path integral for a vector field function F.

ˆ
C
F · dr =

ˆ b

a

F|r · r′(t)dt

Notice that this can be turned into something of the form

ˆ b

a

M(x, y)dx+N(x, y)dy

where dx and dy can be transformed into some dt based on the parameteriza-
tion of the curve. This is how path integrals often appear in practice. Notice
that this equation is exactly the one used to calculate work for a non-constant
vector force; path integrals are extremely useful in mechanics.

8.2.1 Fundamental Theorem of Path Integrals (FToPI)

For a path C : r(t) and a conservative vector field F (F = ∇f) on an open
domain D such that C ⊆ D, thenˆ

C
F · dr = f |r(b)

r(a)

The following statements are equivalent:
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1. F is a conservative vector field

2. ∃f s.t. F = ∇f

3.
´
C F · dr is path-independent

4.
¸
C F · dr = 0

5. Nx = My

However, the last statement is only applicable for two dimensions.

8.2.2 Center of Mass

Path integrals can be used to find the moments and center of mass for some
linear mass with a density expressed by f(x, y). The moments with respect
to the x and y axes, respectively, are defined as

Mx =

ˆ
C
yf(x, y)ds

My =

ˆ
C
xf(x, y)ds

Analogous to earlier discussions of center of mass,

(x̄, ȳ) =

(
My

M
,
Mx

M

)
8.3 Surface Integrals

A surface integral can be thought of as a 2-dimensional analogue of a path
integral. Intuitively, given some surface S, we split it up into tiny regions of
dS. Multiplying by the function evaluated at some point within the tiny re-
gion, then, will yield a summation of components, which can be transformed
into a double integral through a limit.¨

S
f(x, y, z)dS = lim

||∆||→0

∑
i

f(xi, yi, zi)∆Ti

where ∆Ti denotes small parts of the tangent plane to a surface. We know
that the surface area of S cadn be evaluated through a double integral:

Area =

¨
R

|ru × rv|dA
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for S : r(u, v) = 〈g(u, v), h(u, v), k(u, v)〉. Thus,

dS = |ru × rv|dA

and so ¨
S
f(x, y, z)dS =

¨
R

f(x, y, z) · |ru × rv|dA

This is the version of a surface integral for a scalar surface. However, taking
a cross product and then its magnitude can be annoying, at times, and this
form of a path integral can be limiting for several important use cases.

We introduce the concept of a vector surface integral: for a vector field
F and a surface S, the surface integral of F over S is¨

S
F · ndS =

¨
R

F|r(u,v) · (ru × rv)dA

This quantity is also known as the flux of F over S, denoted

Φ =

¨
S

F · ndS

It should be noted that, for closed surfaces (that is, surfaces that contain
some volume Q), the normal vector n must point out of the shape.

9 Fundamental Theorems

9.1 Green’s Theorem

For a positively oriented, finitely piecewise smooth, simple, closed, planar
curve C, with R = C ∪ int(C) and an M and N with continuous first partials
throughout some domain D such that R ⊆ D, then˛

C
Mdx+Ndy =

¨
R

Nx −MydA

An aside about notation: the symbol
¸

indicates a path integral along some
closed curve. In general, a ring on an integral symbol indicates that the
region it is operating is closed.

A positive orientation indicates that we are traveling in a direction such
that, if we envision ourselves to be walking around the closed loop, our left
hand would be pointing towards the interior of the region.
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A corollary to Green’s theorem states that the area under some parametrized
graph can be expressed as

A =

˛
C
xdy = −

˛
C
ydx =

1

2

˛
xdy − ydx

Green’s theorem also works for multiple, connected regions. To see why, first
consider a complex region that is neither type I or II:

Green’s theorem says that the area of this shape should be equal to the path
integral along the boundary. We can, then, split up our region into smaller,
simpler regions of either type I or type II:

The path integral of each separate region should add up to the combined
areas of the regions. We recall the requirement of a positive orientation in
applying the theorem; we must walk in a direction such that our left arm
“points” towards the center of the region.
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Note how the two blue boundaries travel in “opposite” directions; the evalu-
ation of one will be the negation of the other. Therefore, the theorem works
for any combination of type I and II regions.

Note that the integrand for the double integral, Nx −My, looks familiar:
it is the z component of curl F, or curl F·k. Thus, the vector form of Green’s
theorem looks like ˛

C
F · dr =

¨
R

∇× F · kdA

9.2 Divergence Theorem

The Divergence theorem, also known as Gauss’ theorem or Ostrogradsky’s
theorem in different contexts, states that for a closed surface S that encloses
some volume Q, ‹

S
F · ndS =

˚
Q

∇ · FdV

Analogous to Green’s theorem but in the context of surfaces, this theorem
allows us to choose which method to use when computing either a surface
or a volume integral, which may make things computationally easier. Notice
that we may derive an interpretation of divergence from this theorem. ∇ ·F
is effectively the “normalization” of flux surrounding some point P by the
volume it takes up. For a circle of radius ε around some point P ,

∇ · F ≈ 1

Vε

¨
Sε

F · ndS
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9.3 Stokes’ Theorem

Recall the vector form of Green’s theorem:˛
C
F · dr =

¨
R

∇× F · kdA

Stokes’ theorem can be thought of as the generalization of Green’s theorem
to all curves, not just planar ones.

For a surface S that is finitely piecewise smooth, oriented, and bounded
by a curve C that is also finitely piecewise smooth, simple, closed, and positive
oriented, and F with continuous first partials on an open region containing
S, ˛

C
F · dr =

¨
S
∇× F · ndS

Note the consequences of this statement: it doesn’t matter what the surface
we are integrating over is, as long as its outermost boundary remains the
same. From this law, we can glean the idea that curl represents the tendency
of a vector field to rotate about some normal vector n. For a circle of radius
ε around some point P ,

∇× F ≈ 1

πε2

˛
Cε

Fdr

We revise the last statement in our TFAE for path integrals; the true, general
statement instead involves curl:

curl F = 0

47


	Vectors and Solid Analytic Geometry
	Vectors
	Vector Addition
	Scalar Multiplication
	Unit Vectors
	Dot Product
	Component and Projection
	Cross Product

	Lines and Planes in Space
	Lines
	Planes
	Distance

	Surfaces
	Cylinders
	Surfaces of Revolution
	Quadric Surfaces


	Polar Coordinates in Three Dimensions
	Cylindrical Coordinates
	Spherical Coordinates

	Vector Valued Functions
	Definitions
	Curves
	Arclength

	Limits, Derivatives, Integrals
	Limits
	Differentiation
	Integration

	Unit Tangent and Normal
	Curvature
	Acceleration

	Derivatives of Multivariable Functions
	Limits and continuity
	Partial Derivatives
	Clairaut's theorem

	Differentials and Increments
	Increments
	Differentials

	Chain Rule
	Implicit Differentiation

	Directional Derivatives
	Tangent Planes
	Extrema
	Classifying Extrema

	Lagrange Multipliers

	Double Integration
	Iterated Integrals
	Fubini's Theorem

	Moments, Mass, and Moments of Inertia
	Polar Integration

	Triple Integration
	Physics Applications
	Moments and Mass
	Moments of Inertia
	Gyration

	Cylindrical Coordinates
	Spherical Coordinates

	Integral Manipulations
	Surface Area
	Change of Coordinates

	Vector Calculus
	Vector Fields
	Path Integrals
	Fundamental Theorem of Path Integrals (FToPI)
	Center of Mass

	Surface Integrals

	Fundamental Theorems
	Green's Theorem
	Divergence Theorem
	Stokes' Theorem


