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1 Limits

1.1 Definition of a Limit

The limit of a function as it goes to a certain point a is a value L as long
as the values defined in the function around the value a get closer and closer
towards L. By this definition, a does not have to be within the domain of f ,
as long as values around it are.

Formally: let f(x) be a function defined on an interval that contains
x = a. We may say that

lim
x→a

f(x) = L

if, for every number ε > 0 there is a δ > 0, such that |f(x) − L| < ε when
0 < |x− a| < δ.

The limit of a function at a point c does not exist if limx→c− 6= limx→c+ —
that is, if both sides of the limit do not agree, then the limit does not exist.
Note that a limit can still exist even if the point f(c) does not; functions can
agree except at a point.

1.2 Properties of Limits

For functions f(x), g(x), a constant c and some real numbers a, n:

lim
x→a

cf(x) = c lim
x→a

f(x) (1)

lim
x→a

f(x)± g(x) = lim
x→a

f(x)± lim
x→a

g(x) (2)

lim
x→a

f(x)g(x) = lim
x→a

f(x) · lim
x→a

g(x) (3)

lim
x→a

f(x)

g(x)
=

limx→a f(x)

limx→a g(x)
(4)

lim
x→a

[f(x)]n =
[
lim
x→a

f(x)
]n

(5)

lim
x→a

c = c (6)

lim
x→a

x = a (7)

lim
x→a

f(g(x)) = f(lim
x→a

g(x)) (8)

(9)
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1.3 Squeeze Theorem

Define three functions such that f(x) ≤ g(x) ≤ h(x). Then, if

lim
x→a

f(x) = lim
x→a

h(x) = L,

then
lim
x→a

g(x) = L.

The squeeze theorem is particularly useful when it comes to sine/cosine func-
tions, that already come with given bounds. For example, to find limx→∞

sinx
x

,
first note that −1 ≤ sinx ≤ 1.

⇒ −1

x
≤ sinx

x
≤ 1

x

⇒ − lim
x→∞

1

x
≤ lim

x→∞

sinx

x
≤ lim

x→∞

1

x

⇒ 0 ≤ lim
x→∞

sinx

x
≤ 0

⇒ lim
x→∞

sinx

x
= 0

1.4 Evaluation

Plug it in Sometimes, limits are simple enough that merely plugging in for
the variable lets reveals the limit.

Factoring Common within limits with rational functions, we may factor
the numerator and the denominator and attempt to cancel terms out,
in order to manipulate the function to provide a deternminate answer
when the variable is plugged in. With limits, functions may be equal
except at a point; this is perfectly legal.

Multiplying by 1 We may also multiply by some version of “1”, the multi-
plicative identity. A case where this concept is incredibly useful is when
we require the use of conjugate pairs; especially if we had a square root
or a complex number that is difficult, or impossible, even, to work with.

Divide by the degree of the leading term This holds only for limits to
infinity. When we have some polynomial expression, we may divide
each term in the expression by the degree of the leading term; the
leading coefficients will remain, which will be the result of the limit.
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1.5 Epsilon-Delta Proofs

Proving a limit with the epsilon-delta definition is usually done in two “steps”
— a discovery phase and a formal production of the proof.
Let f(x) = x+ 7. We will try to prove the statement: limx→2 f(x) = 9.

1.5.1 Discovery

To find this limit, we may obviously substitute x within the equation with 2
— however, we have not proved this result rigorously. To utilise the formal
definition of a limit, suppose that for every epsilon in which |f(x) − 9| < ε,
there is at least one delta such that 0 < |x−2| < δ. Here, our goal is to prove
that such a delta exists for all epsilon close to our limit of 9. To achieve the
inequalities we desire, we may do some algebraic manipulation:

|f(x)− 9| < ε

|x+ 7− 9| < ε

|x− 2| < ε

Since we have ended up with the same exact expression with our inequality
for delta, what we see is that we may choose δ = ε.

1.5.2 Formal Proof

To prove: limx→2 f(x) = 9 Assume ε is a positive real number and choose
ε = δ
We may set up our inequalities, as per the definition of a limit:

0 < |x− 2| < δ = ε

0 < |(x+ 7)− 9| < ε

|f(x)− 9| < ε

1.5.3 Quadratic Limits

Quadratic limits are more challenging than the standard linear limit proof
because there is an extra term that cannot be dealt with, provided that the

8



expression is not factorable into a perfect square. Let f(x) = x2. To prove
that limx→2 f(x) = 4, we may begin with a standard setup:

|f(x)− 4| < ε

|x2 − 4| < ε

|x+ 2||x− 2| < ε

Now, it is clear that we are close to our ultimate goal of reaching the in-
equality 0 < x− 2 < δ. However, we still have the term |x + 2| to take into
consideration. To deal with this, we can attempt to show that |x + 2| < N
for some real number N . Then, we will only have to show:

|x− 2| < ε

N
.

In order to achieve this, we recall the fact that we only care about values
close to x = 2, say, with a difference of 1.

−1 < x− 2 < 1

3 < x+ 2 < 5

Thus, we may set N = 5 because we know that |x + 2| < N for all such
values that we care about, close to x = 2. To recap, our assumptions so far
are:

|x− 2| < 1

|x− 2| < ε

5

In order to construct our proof, we may just choose δ = min(1, ε
5
).

1.5.4 Finding a δ Given ε

These types of problems require you to find the maximum difference in the
x value such that the resulting output is less than a given ε. Given ε = 0.01,
find the minimum δ for limx→2 x

2 − 3 = 1.

|x2 − 3| − 1 < 0.01, 0 < |x− 2| < δ

3.99 < x2 < 4.01, 0 < |x− 2| < δ
√

3.99 < x− 2 <
√

4.01− 2, δ = min(
√

3.99− 2,
√

4.01− 2)
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1.6 Infinite Limits

1.6.1 At Infinity

The limit of a function as it goes towards infinity can be classified as the
end behavior of the function. As stated before, we may divide by the leading
term of the denominator to find the limit of the function as it goes towards
positive or negative infinity, if the limit exists. If limx→±∞ = L, then y = L
is a horizontal asymptote of f(x). Else, the function grows without bound.
For rational functions, we may examine the leading exponents: axm

bxn

� If m > n, there is no horizontal asymptote and the function grows
without bound.

� If m = n, there is a horizontal asymptote at y = a
b
.

� If m < n, there is a horizontal asymptote at y = 0.

1.6.2 Approaching Infinity

If limx→c →∞, then the function extends without bound at that point.

1.7 L’Hopital’s rule

When dealing with limits, there are seven indeterminate forms:

1∞, 00, ∞0, ∞−∞, 0
0
, ∞∞ , ∞ · 0

In addition to these, it is helpful to state when to not use L’Hopital’s rule:

∞+∞ =∞, −∞−∞ = −∞, 0∞ = 0, 0−∞ =∞, ∞ ·∞ =∞

L’Hopital’s rule states, for the following cases:

lim
x→c

f(x)

g(x)
=

0

0

or

lim
x→c

f(x)

g(x)
=
±∞
±∞

10



where c ∈ R,∞,−∞:

lim
x→c

f(x)

g(x)
=
f ′(x)

g′(x)

It is important to note that this only works if the limit is of an indeterminate
form. We may execute several manipulations to reach a form f(x)

g(x)
.

Example: Exponents k = limx→0+ x
x

ln k = ln lim
x→0+

xx

= lim
x→0+

x lnx

lim
x→0+

x lnx→ 0 · −∞

lim
x→0+

lnx

x−1
= lim

x→0+

1
x

−x−2

= lim
x→0+

−x = 0

ln k = 0, k = 1
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2 Continuity

2.1 Definition of Continuity

A function f(c) is defined to be continuous in an interval (a, b) if, for ∀c ∈
(a, b), it upholds the condition:

lim
x→c−

f(x) = lim
x→c+

f(x) = f(c)

Note that the existence of limx→c f(x) implies that the limit exists from both
sides.

2.2 Intermediate Value Theorem

For a function f(x) that is continuous on the interval [a, b] as well as an N ∈
[f(a), f(b)]: There exists such a value c such that c ∈ (a, b) and f(c) = N .
This theorem can be used to prove that specific values of functions exist,
provided that the function is continuous on the defined interval.

2.3 Consequences

If a function is differentiable at some point, then it is also continuous. How-
ever, it does not commute: continuity does not necessarily imply differen-
tiability. Continuity implies integrability, but integrability does not imply
continuity.
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3 Derivatives

3.1 Definition of a Derivative

The instantaneous rate of change for a function at a point is defined as the
limit as a secant line of a function between two points becomes a tangent
line. In other words, as a point at a moves closer to b, the slope of the line
between the points converges upon the true tangent line slope at the point
b. We may express this as:

f ′(c) = lim
x→c

f(x)− f(c)

x− c

This adheres to the definition of a slope — rise
run

. We may generalize this as
an equation for the tangent line of all points with

f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)

∆x

3.2 Properties

For functions f(x), g(x) and a constant c:

d

dx
[cf(x)] = cf ′(x) (Constant Multiplication)

d

dx
[f(x)± g(x)] = f ′(x) + g′(x) (Addition)

d

dx
[xn] = nxn−1 (Power Rule)

d

dx
[f(x)g(x)] = f ′(x)g(x) + f(x)g′(x) (Product Rule)

d

dx

[
f(x)

g(x)

]
=
f ′(x)g(x)− f(x)g′(x)

(g(x))2
(Quotient Rule)

d

dx
[f(g(x))] = f ′(g(x)) · g′(x) (Chain Rule)

13



3.3 Proofs

3.3.1 Power Rule

y = xn

ln y = n lnx

y′

y
=
n

x

y′ =
n · y
x

y′ = xn · n
x

y′ = nxn−1

3.3.2 Product Rule

y = f(x)g(x)

ln y = ln f(x) + ln g(x)

y′

y
=
f ′(x)

f(x)
+
g′(x)

g(x)

y′ = (f(x)g(x))

(
f ′(x)

f(x)
+
g′(x)

g(x)

)
y′ = g(x)f ′(x) + f(x)g′(x)

14



3.3.3 Quotient Rule

y =
f(x)

g(x)

ln y = ln f(x)− ln g(x)

y′

y
=
f ′(x)

f(x)
− g′(x)

g(x)

y′ =

(
f(x)

g(x)

)(
f ′(x)

f(x)
− g′(x)

g(x)

)
y′ =

f ′(x)

g(x)
− f(x)g′(x)

(g(x)2)

y′ =
f ′(x)g(x)− f(x)g′(x)

(g(x))2

3.4 Implicit Differentiation

Instead of isolating for a single variable in an equation, implicit differentiation
just uses the chain rule to expand when a derivative is taken on both sides.
For example:

x2 + y2 = 1

If we decide to isolate for y, we end up with a difficult expression. Instead,
we can just differentiate with respect to x on both sides:

2x+ 2y · y′ = 0

To get y′ in terms of x, we may perform simple algebraic manipulations and
substitutions.

3.4.1 Logarithmic Differentiation

Logarithmic differentiation is a form of implicit differentiation, used mostly
when there is an expression in an exponent. With the equation:

y = (x2 + 2x+ 1)x

we may apply a natural logarithm on both sides to bring down the exponent.

ln y = x ln(x2 + 2x+ 1)

15



To find dy
dx

, we may just apply implicit differentiation:

1

y
· y′ = ln(x2 + 2x+ 1) + x · 2x+ 2

x2 + 2x+ 1

3.5 Theorems

3.5.1 Extreme Value Theorem

For a function f(x) continuous on a closed interval [a, b], f must have a
miniumum and maximum on the interval, where c, d represent the location
of the lowest and highest point, respectively.

f(c) ≤ f(x) ≤ f(d),∀x ∈ [a, b]

3.5.2 Mean Value Theorem

If a function f(x) is continuous and differentiable on the closed interval [a, b],
then there is at least one point c ∈ (a, b) where

f ′(c) =
f(b)− f(a)

b− a

3.5.3 Rolle’s Theorem

A special case of the Mean Value Theorem: for a function f(x) continuous
and differentiable on a closed interval [a, b] where f(a) = f(b) = 0, there is
some point c ∈ (a, b) such that

f ′(c) = 0

3.5.4 Fermat’s Theorem

If f(x) has a relative extrema at x = c, then c is a critical point, otherwise
defined as when f ′(x) = 0 or doesn’t exist.

3.6 Relative and Absolute Extrema

3.6.1 Minima and Maxima

� A function f(x) has an absolute maximum at x = c if f(x) ≤ f(c)
within the domain of interest of f .
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� Conversely, a function f(x) has an absolute minimum at x = c if
f(x) ≥ f(c) within the domain of interest of f .

� f(x) has a relative maximum at x = c if ∀x, f(x) ≤ f(c) for some open
interval (a, b) around c.

� Conversely, f(x) has a relative minimum at x = c if ∀x, f(x) ≥ f(c)
for some open interval (a, b) around c.

3.6.2 Critical Points

For a function f(x), critical points are located at any point c such that
f ′(c) = 0 or undefined. Note that c must exist inside the domain of the
function. All relative extrema are located at critical points.

3.6.3 Not The First Derivative Test

Critical points may be found where f ′(x) is either undefined or is 0, and
indicate where a function changes from increasing to decreasing, or vice versa.
By testing values all throughout the function, one can conclude its sloping
behavior at that point with the NTFDT: if the f ′(x) > 0, then the function
is increasing; vice versa, if f ′(x) < 0, then the function is decreasing.

3.6.4 First Derivative Test

Based on the information from the NTFDT, extrema occur where the sloping
behavior changes sign. If the sign changes from negative to positive, the point
is a minimum. If the slope changes from positive to negative, then the point is
a maximum. Note that points that are undefined within the function cannot
be extremum.

3.6.5 Inflection Points

Inflection points occur when the concavity of a function changes; indicated
otherwise when the second derivative of a function changes sign. Note that
the sign of the second derivative must change for there to be an inflection
point.

17



3.6.6 Not The Second Derivative Test

On any interval between inflection points, if f ′′(x) > 0, then f is concave up
on that interval - like a cup. If f ′′(x) < 0, then f is concave down.

3.6.7 Second Derivative Test

� If f ′(c) = 0 and f ′′(c) > 0, then there is a minimum at x = c.

� If f ′(c) = 0 and f ′′(c) < 0, then there is a maximum at x = c.

� If f ′(c) = 0 and f ′′(c) = 0 or does not exist, then the test is indetermi-
nate.

3.6.8 Notes and Remarks

The distinction behind the Not The Derivative tests and the Derivative tests
is that Not The Derivative tests find extrema and say something about the
behavior of the function, while the Derivative tests classify those extrema as
either minima or maxima.

3.7 Linearization and Approximation

3.7.1 Differentials

With a function y = f(x), the differentials of the function are defined by the
relationship

dy = f ′(x)dx

We can use differentials to calculate error in approximating functions. For
an independent variable, the differential is just equal to its change, or ∆x.

3.7.2 Newton-Raphson Method

The Newton-Raphson method is a way to find the zeroes of a function by
linearizing it based on the derivative at a point. It relies on multiple iterations
of the same equation:

xn+1 = xn −
f(xn)

f ′(xn)

Failures:
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� May get stuck at relative extrema

� Fails when derivative at any point is 0

� May diverge

� First guess must be near desired root

� May oscillate around a point

3.8 Applications

3.8.1 Optimization

If we define a function f(x) that describes a specific “cost” of a system,
then the most “optimal” set of parameters will occur at endpoints, minima
or maxima, depending on the specific situation at hand. For example, if
we wanted to maximize the enclosed area provided by 625 feet of fence,
we may first set up a constraint equation and a function for optimization:
2x+ 2y = 500, and we want to maximize xy.

y = 250− x,A = x(250− x)

A = 250x− x2

A′ = 250− 2x = 0, x = 125

y = 250− x, y = 125

Our final, maximized area turns out to be 1252 = 15625. Checking the values
surrounding the location such as the pair (124, 126) = 15624 reveal that the
function is, indeed, maximized at (125, 125).

3.8.2 Related Rates

Related rates problems involve finding the rate at which one quantity changes
in relation to another quantity whose rate of change is known. Many related
rates problems begin with basic geometric formulas to construct relationships
between variables. For example, if we know that x2 +y2 = 25, with the initial
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conditions x = 3, x′ = 0.1, y = 4, we may use implicit differentiation to solve
for y′:

d

dx
(x2 + y2) =

d

dx
25

2xx′ + 2yy′ = 0

y′ =
−2xx′

2y

= −xx
′

y

= −0.3

4
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4 Integrals

4.1 Indefinite Integrals

An indefinite integral is defined to be the antiderivative of a function. That
is, a function F (x) is the antiderivative of f(x) if F ′(x) = f(x). We notate
this with: ∫

f(x)dx = F (x) + c

with c being any constant. To perform an antiderivative, we can just “step
back in time” and do the opposite of a derivative operation.

4.2 Properties of Indefinite Integrals

Some of the properties of derivatives extend to antiderivatives:∫
cf(x)dx = c

∫
f(x)dx∫

f(x)± g(x)dx =

∫
f(x)dx±

∫
g(x)dx

4.3 Integration Techniques

4.3.1 U-Sub

When differentiating, we use the chain rule to deal with composite functions.
Similarly, with integration, we may use a u-sub to solve for the expression.
We recall that for a function u(x), the differential can be expressed as du =
u′dx. When we substitute some expression in the function with u, we may
change the differential of the integral to align with the change in variable.
For example, for a function 2x · cosx2:
We can substitute u = x2, and therefore, du = 2x · dx. Then, the integral of∫

2x · cosx2dx may be expressed as:∫
2x cosudx =

∫
cosudu

= sinu+ c = sinx2 + c
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4.3.2 Integration by Parts

To do integration by parts, we can use the following formula:∫
udv = uv −

∫
vdu

where we choose two functions that are being multiplied within the integral
to change into the larger transform. We pick a u piece, which entails differ-
entiating with respect to x to obtain a du differential piece, while with the v
piece we integrate with respect to x to obtain just a v piece. For example:∫

x cosxdx

We cannot simply use some u-sub to solve this problem. Instead, we must
use parts:

u = x, du = dx, dv = cosxdx, v = sinx

This then becomes

x sinx−
∫

sinxdx = x sinx+ cosx+ c

4.3.3 Swingy-Swingy

A corollary to integration by parts is swingy swingy — where we obtain the
original integral on the left side of our equation with different coefficients,
after which we may “swing” said integral to the right hand, original side
of the equation, allowing us to simply use algebraic manipulation to solve.
Swingy swingy is commonly used with trigonometric functions as well as ex,
since they have cyclic derivatives. For example:∫

cosx · exdx

u = ex, du = exdx, dv = cosxdx, v = sinx

ex sinx−
∫

sinx · exdx

u = ex, du = exdx, dv = sinxdx, v = − cosx

ex sinx− (−ex cosx+

∫
ex cosxdx) =

∫
ex cosxdx
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We ended up with the same integral in our equation as before.

ex sinx+ ex cosx = 2

∫
ex cosxdx

∫
ex cosx =

1

2
(ex sinx+ ex cosx)

4.3.4 OIGOIG — EFUSOT

OIGOIG stands for “Odd Is Good, Odd Is Great” with a corollary of “Even
Sucks, Except For U-Subs Of Tangent”. This is less of a technique and more
of a piece of advice — when subbing for either cos x or sinx, then we should
choose the function with an odd power as the differential piece for our u-
sub, which allows us to dissolve the expression cleanly with power-reducing
identities. The inverse is true for u-subs of tangent, as stated in the name.

4.3.5 Partial Fractions

The method of partial fractions involves factoring the denominator and then
setting up a “system” of equations that follow, leaving us with a nice additive
equation of fractions, rather than multiples of them. There are some things
to consider:

1. When decomposing with duplicate terms, we must create a separate
denominator for each respective “power” of the term; for example, to
decompose a fraction like 1

(x+1)2
, we must set up an equation like A

x+1
+

B
(x+1)2

.

2. Sometimes, things don’t factor nicely into simple x terms. In such a
case, we must add coefficients for powers of x up to n − 1, with n
being the degree of the denominator. For example, with a fraction like

1
(x+1)(x2+1)

, we need an expression like A
x+1

+ Bx+C
x2+1

.

4.3.6 Trigsub

Whenever the expression in question involves square roots of some variable
squared plus a constant (e.g.

√
x2 + 1), we should use trigsub. This simply

involves setting up a triangle such that its sides correspond to the constant
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and the variable in question, and then using trigonometric functions to ex-
press the same function in terms of the angle θ. In addition, we must also
find the differential piece dθ with respect to dx and substitute it in to ob-
tain a complete and valid integral. For example, for the integral

∫ √
x2 + 1dx:

We have drawn the appropriate triangle — now, all we have to do is to
substitute. We can begin by substituting

√
x2 + 1 as sec θ. We also know

that x = tan θ — therefore, dx = sec2 θdθ. We can now substitute the entire
integral:∫ √

x2 + 1dx =

∫
sec θ · sec2 θdθ

=
1

2
(− sec θ tan θ + ln | sec θ + tan θ|)

=
1

2
(− sec arctanx tan arctanx+ ln | sec arctanx+ tan arctanx|)

=
1

2
(−x
√
x2 + 1 + ln |

√
x2 + 1 + x|)

Note: for simplicity’s sake, I did not include the derivation of
∫

sec3 x — it
may be derived from integration by parts.

4.3.7 Crazy Tan

To use crazy-tan, we first sub u = tan θ
2
. From this, we can derive the

following differential piece and identities:

dθ =
2

1 + u2
du
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cos θ =
1− u2

1 + u2

sin θ =
2u

1 + u2

tan θ =
2u

1− u2

. . . and the substitutions for other trig functions follow from there. If we plug
in these identities into a particularly nasty integral involving trigonometric
functions, then we obtain an equation made entirely of u pieces — which is
to say, either a polynomial or a rational function, which is easier to work
with.

4.4 Definition of a Definite Integral

A definite integral in terms of x with an even partition for a function of x
can be defined as the signed area under the curve of the function, or, the
summation of an infinite number of boxes constructed to fit the curve. In
the expression, x∗i simply means “the value of x at the increment i.”∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(x∗i )∆x

Note: an integral is not necessarily the area under a curve. An integral is a
sum of small pieces; if the entities being summed are boxes, then the integral
provides the area.
While this is sufficient for regular partitions, when we are considering unequal
partitions, we must add the condition that the maximum width of any piece
→ 0. Let ||∆|| = max (∆xi):

lim
||∆||→0

n∑
i=1

f(x∗i )∆xi
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4.5 Properties of Definite Integrals∫ b

a

[f(x)± g(x)]dx =

∫ b

a

f(x)dx±
∫ b

a

g(x)dx∫ b

a

kf(x)dx = k

∫ b

a

f(x)dx∫ b

a

f(x)dx = −
∫ a

b

f(x)dx∫ a

a

f(x)dx = 0∫ c

a

f(x)dx+

∫ b

c

f(x)dx =

∫ b

a

f(x)dx

4.6 Fundamental Theorem of Calculus

4.6.1 Part 1

For a function f(x) continuous on the closed interval [a, b] and F (x) =∫
f(x)dx, then: ∫ b

a

f(x)dx = F (b)− F (a)

Note: when we use a u-sub to solve definite integrals, we must remember to
either change endpoints to match the u-differential, or indicate clearly that
the endpoints are for a differential other than du.

4.6.2 Part 2

For a function f(x) continuous on an interval I and with a ∈ I if F (x) is
defined by:

F (x) =

∫ x

a

f(t)dt

then
F ′(x) = f(x)

This statement is crucial because it relates derivatives and definite integrals.
As for the more generalized version of this statement:∫ a

g(x)

f(t)dt
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F ′(x) = f(g(x)) · g′(x)

Moreover, if we have a g(x) and a k(x):∫ k(x)

g(x)

f(x)dx =

∫ g(x)

a

f(x)dx+

∫ k(x)

a

f(x)dx.

4.7 Other Theorems

4.7.1 Integral Mean Value Theorem

The integral MVT is a direct consequence of the MVT for derivatives.
For a function f(x), there is a point c ∈ [a, b] for which∫ b

a

f(x)dx = f(c) · (b− a)

4.8 Integral Approximation

4.8.1 Left Endpoint Sum

A left endpoint approximation multiplies the left end of each rectangle with
the width of each piece for n rectangles. In other words:∫ b

a

f(x)dx ≈
n∑
i=1

f(xi−1)∆x

This may also be written as

∆x [f(x0) + f(x1) + · · ·+ f(xn−2) + f(xn−1)]

The approximate error bound for this technique are given by the inequality

ELES ≤
(b− a)2

2n
|max f ′(x)|

4.8.2 Right Endpoint Sum

A right endpoint approximation is essentially the same as a left endpoint
approximation; however, instead of choosing to multiply each width by the
left end, we choose to multiply by the right endpoint. The sum is given as

n∑
i=1

f(xi)∆x = ∆x [f(x1) + f(x2) + · · ·+ f(xn−1) + f(xn)]
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The approximate error bound for a right endpoint sum is the same as it is
for a left endpoint sum:

ERES ≤
(b− a)2

2n
|max f ′(x)|

4.8.3 Midpoint Sum

A midpoint sum, by comparison, takes the function evaluated at the middle
of two points xi−1, xi so that the expression becomes

n∑
i=1

f

(
xi + xi−1

2

)
∆x = ∆x [f(x1) + f(x2) + · · ·+ f(xn−1) + f(xn)]

The error bound for this approximation technique is given by the formula:

EM =
(b− a)3

24n2
|max f ′′(x)|

4.8.4 Trapezoidal Sum

A trapezoidal sum supposes that each segment is represented by a trapezoid,
rather than a rectangle, so that one edge of the shape is sloped to account for
a difference in endpoint values. The sum is given by the following structure:

∆x

2
[f(x0) + 2f(x1) + · · ·+ 2f(xn−1) + f(xn)]

or
∆x

2

(
f(x0) + f(xn) + 2

∑
i=1

n− 1f(xi)

)
The approximate error bound for this sum is given by:

ET =
(b− a)3

12n2
|max f ′′(x)|

4.8.5 Simpson’s Rule

Simpson’s rule provides an approximation of the area under some curve with
parabolas. The general prerequisite to using Simpson’s rule is that the num-
ber of boxes, n, must be an even number. Otherwise, the approximation will
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not work. An approximation by Simpson’s rule is given by:

∆x

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)]

Simpson’s rule and the Trapezoidal and Midpoint approximations may be
related by

Sn =
1

3
Tn +

2

3
Mn

The approximate error bound for Simpson’s rule is given by:

ES =
(b− a)5

180n4
|max f (4)(x)|

4.9 Improper Integrals and Domain Issues

The definition of a definite integral
∫ b
a
f(x)dx requires that a, b be finite, and

that f(x) be integrable on the interval. If any of the two endpoints, instead,
go to infinity, we can take the limit as the particular endpoint goes to infinity.
For example, ∫ ∞

1

1

x
dx = lim

a→∞
[ln |x|]a1

= lim
a→∞

ln a− 0

→∞

If the limit goes to a finite number, the integral is convergent. Otherwise,
it is classified as divergent. Thus, the integral shown above is divergent.
If both endpoints are infinity, we can choose an arbitrary point c within the
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interval of the integral and use the properties of definite integrals:∫ ∞
−∞

ex

1 + e2x
dx =

∫ 0

−∞

ex

1 + e2x
dx+

∫ ∞
0

ex

1 + e2x
dx

= lim
a→−∞

[arctan ex]0a + lim
b→∞

[arctan ex]b0

= arctan 1− lim
a→−∞

arctan ea + lim
b→infty

arctan eb − arctan 1

= lim
a→−∞

arctan ea + lim
b→∞

arctan eb

= 0 +
π

2

=
π

2

The same principle applies to limits with infinite discontinuities at either
its endpoints or within the interval being integrated.

1. If f(x) is continuous on [a, b) and has a discontinuity at b, then the

integral
∫ b
a
f(x)dx is given by limc→b−

∫ c
a
f(x)dx.

2. If f(x) is continuous on (a, b] and has a discontinuity at a, then the

integral
∫ b
a
f(x)dx is given by limc→a+

∫ b
c
f(x)dx.

3. If f(x) is continuous on (a, b) but has a discontinuity at both a, b, then

the integral
∫ b
a
f(x)dx may be solved by choosing an arbitrary point c

within the interval and splitting the operation so that it may be solved
by one of the previous statements.

4. If f(x) is continuous on [a, b] except for some c ∈ (a, b) at which there
exists an infinity discontinuity, then the integral may be split at the
constant c and solved by either of the first two statements.

There are, in addition, several theorems that prove helpful in determining
if an integral either converges or diverges.
For the integral

∫∞
1

1
xP
dx, the integral converges if P > 1 to 1

P−1
; it diverges

otherwise, when P ≤ 1.
The special integral

∫∞
0
xne−xdx converges ∀n ∈ Z+; this can be proved by

induction.
In addition, for two functions f(x), g(x) such that 0 ≤ f(x) ≤ g(x):
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1. If
∫∞
a
g(x)dx converges, then

∫∞
a
f(x)dx converges.

2. Similarly, if
∫∞
a
f(x)dx diverges, then

∫∞
a
g(x)dx diverges.

4.10 Volume

4.10.1 Disk/Washer Method

For a solid of revolution formed by a function f(x) with a hole formed by
g(x) revolved around some axis y = a, the volume of the solid is given by
the formula:

π

∫ b

a

[r1]2 − [r2]2dx

where r1 indicates the radius formed by f(x) about the axis, and r2 indicates
the radius formed by g(x).
This adheres with the definition of the area of a cylinder — if we imagine
that we have an infinite number of cylinders with height dx and radius f(x),
we are given a sum of the volumes of all of the cylinders. We may change
the basis of rotation to a vertical line. In that case, the formula becomes

π

∫ b

a

[f(y)]2 − [g(y)]2dy

Notice how the execution is essentially the same — only the variable we are
integrating with respect to has changed.
To apply a different axis of rotation, we may apply the same logic as with
the first formula.

4.10.2 Shell Method

The volume of a solid of revolution formed by a function f(x) can be given
by the formula:

2π

∫ b

a

p(x)h(x)dx,

with p(x) representing the average distance of the shell from the axis of
rotation, and h(x) representing the height of the function.
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4.10.3 Other Remarks

The disks/washers method is comprised of cylinders perpendicular to the axis
of rotation. The shells method, however, is comprised of hollow cylinders
(“shells”) that are parallel to the axis of rotation.

32



5 Polar and Parametric Calculus

5.1 Derivatives of Parametric Equations

Given a system of parametric equations x(t), y(t), the derivative of the para-
metric equation is given by

y′(t)

x′(t)

which follows the general intuition that the slope of a function at a point is
equal to rise

run
.

5.2 Derivatives of Polar Equations

Polar equations are essentially parametric equations. We have the identities
x = r cos θ and y = r sin θ, where r denotes a specific function of θ. Therefore,
the derivative of a polar equation is given by

d
dθ

(f(θ) sin θ)
d
dθ

(f(θ) cos θ)

Note: When the singular derivatives evaluate to zero, it is important to make
sure of what each mean.

� When y′(θ) = 0, the slope is horizontal at that point because there is
no movement vertically.

� When x′(θ) = 0, the slope is vertical because there is no change hori-
zontally.

� When both pieces evaluate to 0, the derivative at that point is indeter-
minate.

At the pole: if r′(θ) 6= 0 and r(θ) = 0, then the tangent at the pole is
r = f(θ).

5.3 “Area Under the Curve” of a Polar Graph

Integration in terms of area for polar graphs means taking the area of a single
“slice” of a graph, were one to cut from the middle outwards like a circular
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cake. The area under a polar curve is given by

1

2

∫ β

α

(f(θ))2dθ

When calculating the areas of polar graphs, it is important to consider sym-
metry at all times — due to difficulty with sign changes, calculating a single
piece of the area and multiplying by the appropriate factor will be much
easier to deal with.

5.4 Integrals of parametric functions

Given parametric functions x = f(t) and y = g(t), the area under the curve
of the complete parametric graph is given by:∫ b

a

g(t)f ′(t)dt

with a = f(a) and b = f(b).
This is can be derived from recalling that the area under a regular graph is
given by

∫ b
a
F (x)dx. To switch out the variable of integration, we need to

take a differential: dx = f ′(t)dt. We also know that F (x) = F (f(t)) = g(x);
therefore, we get the aforementioned formula.

5.5 Arc Length

The arc length of a function on a closed interval [a, b] is given by

L =

∫ b

a

√
1 + [f ′(x)]2dx

This may be extended to parametric equations, which are expressed as

L =

∫ b

a

√[
dx

dt

]2

+

[
dy

dt

]2

dt

The formula for polar arc length follows a similar format. For a polar function
r(θ) on an interval [α, β],

L =

∫ β

α

√
r2 + (r′)2dθ
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5.6 Surface Area

If we apply similar logic to surface area as we do with volume, then we find
that the method of splitting the function into tiny cylinders does not work.
Instead, we may use arclength, otherwise indicated by

√
dx2 + dy2 = d`.

What this creates for us is are tiny frustums, of which each surface area may
be found with 2πr̄d`. Thus, the surface area of a function may be expressed
as ∫ b

a

2πrd`

where we may replace d` with a formula to fit needs:

� d` =
√

1 + (y′(x))2 · dx

� d` =
√

(x′(y))2 + 1 · dy

� d` =
√

(x′(t))2 + (y′(t))2 · dt

� d` =
√
r2 + (r′(θ))2 · dθ

5.6.1 Surface Area for Polar

The logic for finding the surface area of a solid of revolution in polar form
lies in the parametric relationships in the graphs. Recall:

x = r cos θ, y = r sin θ

Thus, the equations for finding the surface area for a polar equation r = f(θ)
become

A = 2π

∫ β

α

f(θ) sin θ
√

[f(θ)]2 + [f ′(θ)]2dθ (about polar axis)

A = 2π

∫ β

α

f(θ) cos θ
√

[f(θ)]2 + [f ′(θ)]2dθ (about line θ = π
2
)

For alternate axes of rotation, just remember that the radius is the distance
from the axis to the graph, so that we may just take the difference between
as our radius. For example, rotating a circle r = 2 around the axis 5 sec θ
reveals an effective radius of 5− x = 5− 2 cos θ.
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5.7 Smoothness

In order to find the surface area or arc length without any significant prob-
lems, we need smoothness.
In the context of arc length, smoothness just indicates that the curve does
not cross over itself at any point — if it does, then we will need to split the
integral up into pieces and calculate each separately.
In the context of surface area, smoothness implies that the square root part
of our differential for d` does not equal 0 at any point. If it does, then we
will need to split up the integral.
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6 Differential Equations

6.1 Definitions

A differential equation is one that relates a function to one or more of its
derivatives.

6.2 Integration

Some differential equations come in the form y(n) = f(x), for which we may
just integrate both sides until we reach a solution.

6.3 Separable Differential Equations

In order to solve differential equations of a certain format, we may separate
them; that is, divide one side by an expression to obtain an integrable equa-
tion with differentials. An example of a separable differential equation is
y′ = yx, since we may just separate the variables:

dy

dx
= y · x

1

y
· dy = x · dx∫
1

y
dy =

∫
xdx

ln |y| = x2

2
+ C

y = e
x2

2
+C

y = Ce
x2

2

Note: the attached constant is incredibly important to attach at the proper
time. The solution shown above is a general solution of a differential equa-
tion. If we were to attach initial conditions to the equation (e.g. y(0) = 5)

then the resulting equation (y = 5e
x2

2 ) is called a particular solution.

6.3.1 Slope Fields

A slope field is a graphical way of representing the many different solutions of
a differential equation, since finding a definite solution forone can be particu-

37



larly difficult. Drawing a slope field consists of drawing a short line segment
at a point that represents its specific slope.

6.3.2 Euler’s Method

Euler’s method is an algorithm for approximating differential equations.
Given a differential equation y′ = F (x, y) and an initial point (x0, y0), one
may approximate the direction of the function by taking a small “step” in
the direction of the slope indicated at the current point and repeating until
the desired number of points is reached. In general, a smaller step size will
give you a better approximation. For each step, the algorithm computes:

xn+1 = xn + ∆x, yn+1 = yn + ∆F (xn, yn)

6.3.3 Exponential Growth

If y′ is proportional to y, we may solve to get some sort of exponential
equation:

y′ = ky

1

y
dy = k · dx

ln |y| = kx+ C

y = Cekx

6.3.4 Logistic Function

An important example of a differential equation used to model various sce-
narios like population growth is the logistic, or sigmoid function. The model
rests on the principle that the growth rate of a population decreases as the
environment’s carrying capacity, K, is reached. The corresponding equation:

P ′ = bP (1− P

K
)
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where P denotes population, P ′ denotes the rate of change of the population,
K denotes the carrying capacity, and b, a constant. To solve:

K

P (K − P )
· dP = b · dt∫

K

P (K − P )
dP =

∫
bdt∫

1

P
dP +

∫
1

K − P
dP =

∫
bdt

ln |P | − ln |K − P | = bt+ C

ln |K − P
P
| = −bt+ C

K − P
P

= Ce−bt

P =
K

1 + Ce−bt

With the graph of the logistic function:

K represents the upper limit of the function: within the graph, K = 1.

6.3.5 Newton’s Law of Cooling

If the change in temperature T is proportional to the difference between the
ambient temperature of the environment with the present temperature:

T ′ = k(TA − T )
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We may solve this setup with a separation of variables:

1

TA − T
· dT = k · dt∫

1

TA − T
dT =

∫
kdt

− ln |TA − T | = kt+ C

ln |TA − T | = −kt+ C

TA − T = Ce−kt

T = TA − Ce−kt

the final equation of which is Newton’s law of cooling.

6.3.6 Tank Problems

Suppose there is a tank of a volume V , in gallons, with both a rate in and rate
out of r, in gallons per second. In addition, there is an inflow of matter with
a concentration of c kilograms per gallon, and the unknown variable is the
concentration outwards, y. The change in matter concentration in this sce-
nario may be modeled by the representation y′ = (matterin)− (matterout),
equal to c · r − x · r.

y′ = c · r − y · r

This scenario can be solved with a separation of variables. Note: If the rate
in and rate out are different numbers, then the differential equation cannot
be solved with the method outlined.

7 Sequences and Series

7.1 Sequences

7.1.1 Definitions

A sequence is an enumerated list of terms. Generally, a sequence a with n
elements is denoted by an; every element of the list of index i is denoted ai.
A recursive sequence is a sequence in which each successive term is defined
by terms before it. A famous example of this is the Fibonacci sequence. A
monotonic sequence is one that is either non-increasing or non-decreasing;
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that is, they may stay constant and either increase or decrease, but never
both. A strictly monotonic sequence is one that only increases or decreases
without staying constant at any point.

7.1.2 Limit of a sequence

The formal definition of the limit of a sequence is stated as:

For L ∈ R,
limn→∞ an = L iff ∀ε > 0 ∃N > 0
such that n > N and |an − L| < ε

An incredibly useful theorem for finding the limits of sequences is the handy
theorem, which says that we may express a sequence as a function with
which we may use tricks like L’Hopital’s rule to find the limit. Formally:

For L ∈ R, f : R→ R s.t. limx→∞ f(x) = L,
if ∃N ∈ N s.t. ∀n > N , n ∈ N, an = f(n)

then limn→∞ an = limx→∞ f(x) = L

With the Handy theorem, we may use different limit properties defined for
a function, in addition to the squeeze theorem.

7.2 Series

7.2.1 Definition

A series is defined to be the sum of a sequence: for a sequence an, its infinite
series would be

∑∞
n=1 an.

7.3 Series Convergence Tests

7.3.1 Nth Term Test (NTT)

Essentially, the NTT asks for the nth term of a sequence an as n → ∞. If
limn→∞ an = L for L 6= 0, then the series

∑∞
n=1 an is certainly divergent. If

limn→∞ an = 0, then the outcome of the test is uncertain; the series may or
may not diverge.

41



7.3.2 Geometric Test

A geometric sequence follows the very specific form of a(b)n, with a, b being
constants. Its series, therefore, is a

∑∞
n=1 b

n. A geometric sequence converges
if b ∈ (−1, 1), and diverges otherwise. This test only applies to valid geo-
metric series. The converging value of a geometric series is given by the
formula

a

1− r
where a is the coefficient and r is the ratio. Meanwhile, the nth term of a
geometric series can be found with the formula

a(rn − 1)

r − 1

7.3.3 Telescoping Test

A telescoping series consists of terms that eventually cancel each other out.
Usually, this requires multiple iterations written out to realize. A typical
telescoping series usually looks like

∞∑
n=1

1

n
− 1

n+ 1

from which it is obvious that successive terms will cancel each other out.
Some are not obvious at first glance, and may be solved for through partial
fraction decomposition.

7.3.4 Integral Test

The integral test just involves taking an improper integral towards infinity of
the expression of the series. If the integral diverges, then so does the sum of
the sequence an; likewise, if the integral converges, then the series converges
as well. However, using the integral test requires three prerequisites:

1. The function is continuous on the domain we care about.

2. The function decreases on the domain we care about.

3. The function is positive on the domain we care about.

The second condition can just be proven with the use of the NTFDT, while
the others can be proven with just a simple observation of the function.
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7.3.5 p-Series Test

A p-series takes a specific form of

∞∑
n=1

1

np

for some constant p. By the test, the series diverges if p ≤ 1, and converges
otherwise. This test is proven with the use of the integral test.

7.3.6 Basic Comparison Test (BCT)

The BCT leverages inequalities that may be created between different func-
tions. It leverages known properties of another series in addition to the series
that is being tested; hence, its name of a “comparison test.” For a series that
is known to converge

∑∞
n=1 an compared to an unknown series

∑∞
n=1 bn: if

bn ≤ an, for all n that we care about, then we know that
∑∞

n=1 bn: if bn ≤ an
converges as well.
Conversely, if

∑∞
n=1 an diverges and an ≤ bn, then

∑∞
n=1 bn is known to di-

verge. The BCT requires that both an and bn are positive and decrease on
the interval we care about.

7.3.7 Limit Comparison Test (LCT)

The LCT also leverages the known properties of one other series, with the
same prerequisites as the BCT. The test states that for two series

∑∞
n=1 an

and
∑∞

n=1 bn with one of the series having a known convergence/divergence
property, and if

lim
n→∞

an
bn

= c|c ∈ R+

then either
∑∞

n=1 an and
∑∞

n=1 bn are both convergent or divergent.

7.3.8 Alternating Series Test (AST)

For a series of the form
∞∑
n=0

(−1)nan

or others in which the terms of the sequences alternate signs, (another ex-
ample being

∑∞
n=0 cos (πn)an), the AST says that if:
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1. limn→∞ an = 0

2. an+1 ≤ an,

then the alternating series converges.

7.3.9 Ratio Test (Ra. T)

For an infinite series
∑∞

n=1 an with an 6= 0, the ratio test says that:

1.
∑∞

n=1 an converges if limn→∞

∣∣∣an+1

an

∣∣∣ < 1

2.
∑∞

n=1 an diverges if limn→∞

∣∣∣an+1

an

∣∣∣ > 1 or limn→∞

∣∣∣an+1

an

∣∣∣→∞
3. The test is inconclusive if limn→∞

∣∣∣an+1

an

∣∣∣ = 1

7.3.10 Root Test (Ro. T)

The root test has no prerequisites. The root test states that for a series∑∞
n=1 an: We define a value L such that L = limn→∞

n
√
|an|.

1. If L > 1 (including L→∞), then the series diverges.

2. If L = 1, then the test is inconclusive.

3. If L < 1, then the series converges.

7.4 Power Series

A power series is defined to be a series of the form

∞∑
n=0

an(x− c)n

where c is the “center” about which the series exists. Effectively, the series is a
function for which we can determine the interval of convergence. The interval
of convergence is dictated by the radius of convergence, usually denoted R.
There are two specific theorems that pertain to this goal.
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7.4.1 Theorem 1

For a power series
∑∞

n=0 an(x−c)n, there are three conditions of convergence,
of which the series fulfills exactly one.

1. The series converges for only x = c, or, R = 0.

2. The series converges absolutely only within a balanced interval around
c of radius R, or when |x− c| < R. The theorem does not have a con-
clusion at exactly |x−c| = R, so we must check endpoints individually.

3. The series converges absolutely everywhere.

Note that each interval always contains the center, c — a power series always
converges at its center.

7.4.2 Theorem 2

Define a function f such that f(x) =
∑∞

n=0 an(x− c)n with R > 0. Then,

1. f(x) is continuous and differentiable on (c−R, c+R).

2. f ′(x) =
∑∞

n=1 an · n · (x− c)n−1

3.
∫
f(x)dx =

∑∞
n=0 an(x− c)n+1 · 1

n+1

Any power series and its derivatives/integrals share the same radius of con-
vergence. However, endpoints may behave differently. Note that one should
be careful about starting points when differentiating or integrating formu-
laically.

7.4.3 Representing Functions

One extremely useful way to think about power series is to view them as
functions who behave like a corresponding function around within their in-
terval of convergence. A most basic example of this is a manipulation with
the geometric series.
With the function 1

1−x , one can easily tell that it takes the form of the value
to which a geometric series converges, with the common ration being x.
Therefore,

1

1− x
=
∞∑
n=0

xn, x ∈ (−1, 1)
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One can manipulate functions to take a similar form to 1
1−x — take x

7−x2 , for
example.

x

7− x2
= x · 1

7− x2
=
x

7
· 1

1− (x
2

7
)

x

7− x2
=
x

7

∞∑
n=0

(
x2

7

)n
, x ∈ (−

√
7,
√

7)

We can also differentiate and integrate series to achieve a desired power series
representation. For the function ln (5− x), recall that it equals −

∫
1

5−x .
Therefore,

1

5− x
= −

∫
1

5
·
∞∑
n=0

(x
5

)n
We can thus integrate each successive term until we find a series; in this case,
C −

∑∞
n=0

xn+1

(n+1)5n+1 , where C = ln 5 after plugging in x = 0.

7.5 Taylor and Maclaurin Series

While finding the power series representation of a function through purely the
geometric series can be useful, it is also extremely limited in its applications.
Thus, a more general form of approximating a function can be found through
a Taylor series representation. A Taylor series is defined as:

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n

= f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · ·

As shown, the center of the power series is a constant a. A Maclaurin series
is simply the Taylor series about x = 0.
It’s observed that the series yields a polynomial function as an approximation
for f(x) — thus, any polynomial function will be represented perfectly as a
finite Taylor series. For functions like cosx, what we get from finding its
Taylor series is an infinite degree polynomial, of which we can find a partial
sum up to degree n to find its nth degree Taylor polynomial; or,

Tn(x) =
n∑
i=0

f (i)(a)

i!
(x− a)i
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7.5.1 Binomial Series

A binomial function of a form (1 + x)k can be expressed as a power series
that converges if |x| < 1:

(1 + x)k = 1 + kx+
k(k − 1)

2!
x2 +

k(k − 1)(k − 2)

3!
x3 + · · ·

This is an extension of the binomial theorem that works not only when
k ∈ N+ but for all k ∈ R.

7.5.2 Lagrange Error Bound

This motivates the idea of a remainder, or an error bound; the error be-
tween an nth degree Taylor polynomial and the function f(x) is defined to
be Rn(x) = f(x)− Tn(x). The error bound theorem states that:

With f(x) = Tn(x) +Rn(x), Rn(x) = f (n+1)(z)
(n+1)!

(x− c)n+1 This can be restated
as:

|Rn| ≤
fn+1(z)|x− c|n+1

(n+ 1)!

where Rn is the remainder and z is some value between c and x. This can
be rewritten again to become easier to use:

|Rn| ≤
k|x− c|n+1

(n+ 1)!

for some k ≥ fn+1(z),∀z ∈ (x, c)

7.5.3 Other Remarks

Even vs. Odd
You’ll notice that the Taylor series for cos x is made up of entirely even
powers; hence, it is said to be an even function. The same principle applies
to sin x; all of its powers are odd, so it is an odd function.
Complex
Take the Taylor series representation for a function eix:

∞∑
n=0

(ix)n

n!
= 1 + ix− x2

2
− ix3

3!
+
x4

4!
+
ix5

5!
· · ·
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Now notice that:

cosx = 1− x2

2
+
x4

4!
− x6

6!
· · ·

and

i sinx = i

(
x− x3

3!
+
x5

5!
− x7

7!

)
Thus, we can conclude that

eix = cosx+ i sinx

the right hand side of which is De Moivre’s theorem, which represents a
complex number. The above identity is known as Euler’s identity, which
relates exponential forms to complex numbers. This gives rise to what is
dubbed the “most beautiful equation in all of mathematics”:

eiπ + 1 = 0
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8 Physics Applications

8.1 Work

The basic law of work for a force perpendicular to a surface states that

W = F · x

or, when the force is at an angle θ to a surface,

W = F · x · cos θ

This formula works perfectly well for constant forces across the entirety
of the distance, but it cannot reasonably account for variable forces; to deal
with those situations, calculus is needed. As work is simply the area under
a force-distance graph, work can be expressed as the area under the curve of
a function of distance that determines force, or

W =

∫ b

a

F (x)dx

This is motivated by the idea that, with a variable force, a tiny change (∆W )
is equal to the force at a point times a tiny subinterval ∆x. In other words:

W =
∑

∆W =
∑

F (c)∆x

When we have a relationship ∆W = F (x)∆x, we may simply integrate to
find the total W .

8.1.1 Springs

We have Hooke’s law,
Fspring = k · x

where k is the spring constant. While the whole of Hooke’s law contains a
negative sign to account for the vector direction of the force, the negative
sign will be omitted as only the magnitude is being discussed. Since the
force exerted is not constant across a certain distance, the work done must
be found with an integral. If one requires a newtons of force to compress a
spring b meters, then the spring constant k must be a

b
; giving us the equation

F = a
b
· x. Therefore, ∆W = a

b
x ·∆x, and

W =

∫ x2

x1

a

b
· xdx
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8.1.2 Gravitation

Newton’s Law of Universal Gravitation states:

F = G
m1m2

r2

However, for a problem where the gravitational force as a whole depends on
an object’s distance from a body, it may be helpful to simplify the formula
to an inverse square relationship with the radius:

F =
C

r2

From this, a relationship between work, force and distance can be created:
∆W = C

x2
·∆x. The same can be applied to Coulomb’s law of charge (F =

k q1·q2
d2

), as both follow the similar format.

8.1.3 Chains

The weight of a chain can be gathered from its density per unit length.
Therefore, the force of lifting an increment of chain can be expressed as
∆F = ρ ·g ·∆y. Therefore, the relationship between work done by lifting the
chain some distance and an increment of length is then ∆W = ρ · g ·∆y · y.

8.2 Centroids

For an object with mass m and a distance from the axis x, its moment is
defined as m · x. The total moment of a system is all of the individual
moments summed together. The center of mass of a system on just the x
axis is all of the individual moments of each component summed together,
then averaged over the total mass; or,

x =

∑
mnxn∑
mn

The concept can be extended to two dimensions. If the moment about
the y axis is My, and the moment about the x axis is Mx, then the centers
of mass are simply

x =
My

m
, y =

Mx

m
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Notice how My pertains to an equation not involving the y axis, but the x
axis; this is because masses on the x axis are really rotating about the y axis.

Not every system will be perfectly packaged point masses that are sepa-
rate from each other; often, they will be continuous surfaces. Thus, the mass
and moments must be found with integrals, or sums of tiny pieces of mass
and distance over the whole. Mass is intuitive; for a planar lamina, defined
with the functions f(x) and g(x) with a density of ρ, the mass is simply

m = ρ

∫ x2

x1

f(x)− g(x)dx

The moments, however, are a bit more complicated. After derivation, a
simplified formula presents

Mx = ρ

∫ x2

x1

f(x) + g(x)

2
(f(x)− g(x))dx

My = ρ

∫ x2

x1

x(f(x)− g(x))dx

The x and y coordinates of the lamina are then, respectively,

(x, y) =

(
My

m
,
Mx

m

)
8.2.1 Theorem of Pappus

A useful application of knowing the center of mass of an area is the Theorem
of Pappus, which gives the volume of a solid of revolution of a planar mass.
For a region R with an area A revolving about a line L such that L does not
pass through the interior of R, with a distance of r from the centroid of R
to L, the volume is defined as:

V = 2πrA

8.3 Fluid Force

The pressure of a fluid with a weight density w against an object at a height
h is defined as

P = wh
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We also have Pascal’s Principle, which states that pressure is proportional
to force:

F = PA

where A is the area that the pressure is applied onto. When a mass is
horizontal and has a constant height while submersed in a fluid, then no
calculus is needed. However, if the mass is vertical against the fluid, then the
height is not constant; therefore, we need calculus. For an object submersed
in a fluid, the force of the pressure against the object is

F = w

∫ b

a

h(y)L(y)dy

where h(y) is a function of the fluid depth and L(y) is the mass’s horizontal
length at the mark y.
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9 Appendix

9.1 Trig Identities

Pythagorean Double Angle Power reducing

sin2 α + cos2 α = 1 sin 2α = 2 sinα cosα sin2 α = 1−cos 2α
2

sec2 α− tan2 α = 1 cos 2α = 2 cos2 α− 1 cos2 α = cos 2α−1
2

csc2 α− cot2 α = 1 tan 2α = 2 tanα
1−tan2 α

tan2 α = 1−cos 2α
1+cos 2α

Product to Sum Sum to Product

sinα sin β = 1
2
[cos (α− β)− cos (α + β)] sinα + sin β = 2 sin α+β

2
cos α−β

2

cosα cos β = 1
2
[cos (α− β) + cos(α + β)] sinα− sin β = 2 cos α+β

2
sin α−β

2

sinα cos β = 1
2
[sin (α + β) + sin (α− β)] cosα + cos β = 2 cos α+β

2
cos α−β

2

cosα sin β = 1
2
[sin (α + β)− sin (α− β)] cosα− cos β = −2 sin α+β

2
sin α−β

2

9.2 Common Derivatives/Integrals∫
xndx =

1

n+ 1
xn+1

∫
exdx = ex∫

lnxdx = x lnx− x∫
1

x
dx = ln |x|∫

axdx =
1

ln a
ax∫

sinxdx = − cosx∫
cosxdx = sinx

∫
tanxdx = − ln | cosx|∫

secxdx = ln | secx+ tanx|∫
cotxdx = ln | sinx|∫

cscxdx = ln | cscx− cotx|∫
sec2 xdx = tanx∫

csc2 xdx = − cotx∫
secx tanxdx = secx
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∫
cscx cotxdx = − cscx∫

a

a2 + x2
dx = arctan

x

a∫
1√

a2 − x2
dx = arcsin

x

a∫
a

x
√
x2 − a2

dx = sec−1 x

a∫
a

a2 − x2
dx =

1

2
ln |x+ a

x− a
|∫

secx tanxdx = secx∫
− cscx cotxdx = cscx

∫
sinhxdx = coshx

∫
coshxdx = sinhx

∫
tanhxdx = ln | coshx|

∫
cothxdx = ln | sinhx|

∫
cschxdx = ln | tanh

x

2
|

∫
sechxdx = ln arctan sinhx

9.3 Polar Graphs

Circles

� r = a cos θ: Circle centered on the polar axis with diameter a, with
leftmost edge at pole

� r = a sin θ: Circle centered on θ = π
2

with diameter a, with lowermost
edge at pole

� r = a: Circle centered at the pole with a radius a, diameter 2a

Limaçons (r = a± b sin θ, r = a± b cos θ)

� When the function is sin, the shape is centered on the line θ = π
2

� When the function is cos, the shape is centered on the polar axis.

� If the operation is +, then the depressed side points down/left.

� If the operation is −, then the depressed side points up/right.

�
a
b
< 1: Looped Limaçon (looped on the depressed side)

�
a
b

= 1: Cardioid (pointed)
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� 1 < a
b
< 2: Dimpled Limaçon (Slightly depressed side)

� 2 ≤ a
b
: Convex Limaçon (flat side)

Roses (r = a sin bθ, r = a cos bθ)

� If b is even, then there are 2b petals.

� If b is odd, then there are b petals.

� The effective length of each petal is a.

Lemniscates (r2 = a2 sin 2θ, r2 = a2 cos 2θ)

� When the function is sin, the lemniscate is slanted, symmetric to the
pole.

� When the function is cos, the lemniscate is symmetric to the polar axis
and θ = π

2

� The length of each “petal” in a lemniscate is equal to a.
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9.4 Common Taylor Series

ex =
∞∑
n=0

xn

n!

= 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·

cosx =
∞∑
n=0

(−1)n
x2n

(2n)!

= 1− x2

(2!)
+
x4

4!
− x6

6!
+
x8

8!
− · · ·

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

= x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− · · ·

1

1− x
=
∞∑
n=0

xn

= 1 + x+ x2 + x3 + x4 + · · ·

ln (1 + x) =
∞∑
n=1

(−1)(n+1)x
n

n

= x− x2

2
+
x3

3
− x4

4
+
x5

5
− · · ·
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