
18.C06

Ace Chun

December 13, 2024

Contents

1 Basics of Linear Equations 4
1.1 Row Picture . 4
1.2 Column Picture . 4
1.3 Linearity . 5

2 Vector Spaces 5
2.1 Definitions . 5
2.2 Column Space . 5
2.3 Null Space . 6
2.4 Row Space . 6
2.5 Left Null Space . 6

3 Linear Independence 7
3.1 Definitions . 7

3.1.1 Vector Span . 7
3.2 Rank . 8

3.2.1 Rank-Nullity Theorem 8
3.2.2 Cases . 9

4 Solving Linear Equations 9
4.1 Existence and Uniqueness of Solutions 9
4.2 Gaussian Elimination . 10

4.2.1 Where it fails . 12
4.2.2 Permutation . 13
4.2.3 Null Space Basis . 14

1

4.3 Inverses . 16
4.4 LU Factorization . 17

4.4.1 Solving with LU factorization 19

5 Orthogonality 20
5.1 Transposes . 20
5.2 Vector Properties and Dot Products 20
5.3 Orthonormal Bases . 21
5.4 Orthogonal Subspaces and Complements 22

5.4.1 Four Fundamental Subspaces 22
5.5 Orthogonal Projection . 23

5.5.1 Gram-Schmidt Process 25
5.5.2 QR Factorization . 26

6 Singular Value Decomposition 27
6.1 Properties . 29
6.2 Low-rank Approximation . 29
6.3 Moore-Penrose Pseudoinverse 29
6.4 Operator Norm . 30
6.5 Condition Number . 30

7 Determinants 31
7.1 Geometric Interpretation . 31
7.2 Properties . 31

8 Eigenvalues and Eigenvectors 34
8.1 Characteristic Polynomial . 35
8.2 Eigenvectors as a basis . 35
8.3 Diagonalization . 36
8.4 Matrix Powers and the Exponential 37
8.5 Matrix Similarity . 38
8.6 Companion Matrices . 39
8.7 Degenerate Matrices . 39

8.7.1 Jordan Vectors . 40
8.7.2 Jordan Blocks . 41

2

9 Special Matrix Structures 42
9.1 Markov Matrices . 42
9.2 Real-Symmetric and Hermitian Matrices 42
9.3 Positive (Semi-) Definite Matrices 43

9.3.1 Connection to the SVD 44
9.4 The Jacobian Matrix . 45

10 Applications 45
10.1 Graphs . 45
10.2 Regression and Fitting . 46

10.2.1 Regularization . 48
10.3 Statistical Interpretations . 48

10.3.1 Mean . 48
10.3.2 Variance . 49
10.3.3 Covariance . 49
10.3.4 Principal Component Analysis 50

10.4 Linear Recurrences . 50

11 Optimization 52
11.1 Quadratic Programming . 52
11.2 Gradient Descent . 53

11.2.1 Exact Line Minimization 54
11.2.2 Fixed learning rate . 55
11.2.3 Accelerated Gradient Descent 56

11.3 Constraints . 58
11.3.1 Equality Constraints 58
11.3.2 Inequality Constraints 59
11.3.3 KKT Conditions . 59

3

1 Basics of Linear Equations

The study of linear algebra is, essentially, the examination of the equation

Ax = b

where A is a linear map, often represented as a matrix of numbers, and x, b
are vectors.

An m × n (m rows, n columns) matrix A takes inputs of vectors in Rn

and outputs vectors in Rm. Dimensions of “neighboring” maps should align,
i.e.:

A
m×n

x
n×1

= b
m×1

1.1 Row Picture

The “row picture” of linear equations understands them, fittingly, in terms of
the rows of the matrix A; more specifically, the rows of A serve as constraint
equations on the vector x to produce b. Take, for example,[

1 2
−1 1

] [
x
y

]
=

[
1
2

]
The row picture says that the solution(s) to this linear equation are all points
(x, y) that satisfy

x+ 2y = 1

−x+ y = 2

1.2 Column Picture

The “column picture” of linear equations instead understands linear equa-
tions as linear combinations of column vectors (more specifically, the columns
of A). Taking the example above,[

1 2
−1 1

] [
x
y

]
=

[
1
2

]
With the row picture, this would instead be interpreted as the values x and
y that make the following combination possible:

x

[
1
−1

]
+ y

[
2
1

]
=

[
1
2

]
4

1.3 Linearity

The matrix A is a linear operator, meaning that it has two qualities:

1. Additivity: A(x+ y) = Ax+ Ay

2. Homogeneity: A(αx) = αAx

2 Vector Spaces

2.1 Definitions

A vector space V is any set of “vectors” that support the addition operation
and multiplication by a scalar. In addition, for any x, y ∈ V , their linear
combinations must also be in V :

x, y ∈ V ⇒ αx+ βy ∈ V ;α, β ∈ R

We put “vectors” in quotations because vector spaces do not actually have
to be composed of vectors — we can create a vector space for any object, as
long as it obeys the closure under addition and scalar multiplication.

A subspace S is a subset S ⊆ V that is, itself, a vector space (i.e., for
x, y ∈ S, αx + βy ∈ S). A consequence of this is that every subspace must
contain 0, because we must accomodate for linear combinations where the
scalar multipliers α, β, · · · are all 0.

In terms of linear equations, there are four particular subspaces that we’re
interested in, which are covered in the following sections.

2.2 Column Space

The column space of some matrix A is defined as the set of all vectors x that
can be made from some linear combination of the columns of A. For

A =


∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣
a1 a2 · · · an∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣



5

the column space is then

C(A) = {x|x = c1a1 + c2a2 + ·+ cnan}

In line with our “column picture,” the equation

Ax = b

is only solvable when b ∈ C(A), because that then means that there does
exist some linear combination of the columns of A that yield b.

From this, it is obvious that the basis for the column space of A is some
set of linearly independent columns in A.

2.3 Null Space

The null space of A is defined as the set of vectors x that are mapped to 0
via A. By default, 0 itself is in the null space (which is pretty boring), so
most of the time, we are interested in vectors that aren’t 0 that are also in
the null space (if there are any). More formally,

N(A) = {x|Ax = 0}

Finding the basis for the null space is less obvious, and will be covered in
section 4.2.3.

2.4 Row Space

The row space (also denoted C(AT)) is the space obtained by taking linear
combinations of the rows of A. Taking a linear combination of the rows is
equivalent to “leftiplying” A by some row vector:[

c1 c2 · · · cn
]
A

2.5 Left Null Space

The left null space (also denoted N(AT)) is the null space of the transpose
of A, or all row vectors mapped to the zero vector by A.[

c1 c2 · · · cn
]
A = 0

6

3 Linear Independence

3.1 Definitions

A set of vectors {v1,v2, · · · ,vn} is said to be linearly independent iff

c1v1 + c2v2 + · · ·+ cnvn = 0

only when c1 = c2 = · · · = cn = 0. Stated differently, the vectors are linearly
independent if 

∣∣∣∣ ∣∣∣∣ · · ·
∣∣∣∣

v1 v2 · · · vn∣∣∣∣ ∣∣∣∣ · · ·
∣∣∣∣



c1
c2
...
cn

 =


0
0
...
0


Ac = 0

only if c = 0. A set of linearly independent vectors is called a basis for the
space that they cover.

Conversely, a set of vectors is linearly dependent if any one of them can be
expressed as linear combinations of the others. In other words, there exists
a c ̸= 0 that, when multiplied by the matrix containing the set of vectors,
yields the 0 vector.

We can discuss this in terms of the null space of the matrix A — its
columns are independent if N(A) only contains 0. Conversely, the columns
of A are dependent if N(A) contains vectors other than 0.

3.1.1 Vector Span

The span of a set of vectors {v1,v2, · · · ,vn} is defined to be all other vectors
“reachable” by taking linear combinations of the set. Put mathematically,

span v1,v2, · · · ,vn = {c1v1 + c2v2 + · · ·+ cnvn

∣∣∣∣c1, c2, · · · , cn ∈ R}

7

Or, in a cleaner matrix representation, all b where

b =


∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣
v1 v2 · · · vn∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣



c1
c2
...
cn


= Ac

Note that the set of all bs is exactly the column space of A.

3.2 Rank

There are many equivalent ways of describing rank, but they all boil down
to expressing the number of “independent things” we have.

Formally, the rank of a matrix is the number of independent columns (or
rows). The idea that the number of independent rows and columns is the
same is not obvious, but it is important. The rank can also be defined as the
smallest number r for which the following factorization of A exists:

A
m×n

= C
m×r

R
r×n

The rank is also the dimension of both the column space and the row
space, where dimension is defined as the number of basis vectors needed to
define it.

For rectangular matrices, the maximum value the rank could have is the
minimum of m,n. This is because you cannot have more independent rows
than columns, or vice versa.

3.2.1 Rank-Nullity Theorem

The rank nullity theorem asserts that the dimension of the null space and the
dimension of the column space of A add up to the total number of columns
of A. That is,

dim N(A) = n− r

The dimension of the left null space, similarly, is

dim N(AT) = m− r

8

3.2.2 Cases

If A is an m× n matrix, we have four following cases:

1. m = n = r — A is square and full-rank.

2. m < n, r = m — A is a wide matrix and is full row rank.

3. m > n, r = n — A is a tall matrix and is full column rank.

4. r < m, r < n — A is rank-deficient.

4 Solving Linear Equations

4.1 Existence and Uniqueness of Solutions

Ax = b

will only have solutions for x when b is in the column space of A. Note that
both b and C(A) exist in the ambient space Rm — that is, the constituent
parts of C(A) and b are m-entry vectors. If C(A) only covers part of that
space (r < m), then there is a possibility that b ∈ Rm is not in C(A). This
especially happens when matrices are “tall” (have more rows than columns),
as the maximum rank of the matrix will definitively be less than m.

On the other hand, if C(A) covers the entire ambient space Rm, then
Ax = b will always have a solution. However, the uniqueness of that solution
depends on N(A). To see why, consider a case where N(A) contains vectors
other than 0. We’ll take one of these vectors and call it xc. In addition, we’ll
take a vector xp that fulfills Axp = b. α ∈ R. By linearity,

A(xp + αxc) = Axp + αAxc

However, xc is in the null space of A by definition. So

Axp + αAxc = b+ 0 = b

Therefore, if xp is a solution to Ax = b, then xp + αxc for an arbitrary
constant α is also a solution to Ax = b. In fact, if N(A) has any non-zero
vectors, then there will be an infinite number of solutions to Ax = b (due
to multiplication by an arbitrary constant), given that there exists some xp

that solves the equation.

9

4.2 Gaussian Elimination

Gaussian elimination is the formalized version of the process that subtracts
multiples of rows from other rows to produce something known as an upper
triangular matrix, which a matrix that has non-zero entries on and above its
diagonal, and zeroes everywhere else. For example,

A =

a11 a12 a13
0 a22 a23
0 0 a33


would be considered upper triangular. This is also called row-echelon form.

To solve a system Ax = b, we would augment b to A and perform
Gaussian elimination. For example, take some system1 3 1

1 1 −1
3 11 6

x =

 9
1
35


The augmented representation of this system would look like1 3 1

∣∣ 9
1 1 −1

∣∣ 1
3 11 6

∣∣ 35


We can now perform Gaussian elimination:

1 3 1

∣∣∣∣ 9

1 1 −1
∣∣∣∣ 1

3 11 6

∣∣∣∣ 35


r2−r1−→


1 3 1

∣∣∣∣ 9

0 −2 −2
∣∣∣∣ −8

3 11 6

∣∣∣∣ 35



r3−3r1−→


1 3 1

∣∣∣∣ 9

0 −2 −2
∣∣∣∣ −8

0 2 3

∣∣∣∣ 8


r3+r2−→


1 3 1

∣∣∣∣ 9

0 −2 −2
∣∣∣∣ −8

0 0 1

∣∣∣∣ 0



10

The boxed numbers represent pivots, which are numbers that are the
leftmost non-zero quantity for their respective rows in the reduced matrix.
A pivot column is a column that contains a pivot. It turns out that the rank
of A can also be expressed as the number of pivot columns that it has.

Our resultant system (on the bottom right) can be translated back into:1 3 1
0 −2 −2
0 0 1

x1

x2

x3

 =

 9
−8
0


Or, equivalently, in equation form:

x1 + 3x2 + x3 = 9

−2x2 − 2x3 = −8
x3 = 0

Doing so makes it really clear what the solution to this system is; we known
x3 outright, and we can backsubstitute for each equation above to fully solve
the system.

x3 = 0

−2x2 − 2x3 = −2x2 = −8
x2 = 4

x1 + 3x2 + x3 = x1 + 12 = 9

x1 = −3

x =

−34
0


The ability to use backsubstitution makes solving the linear system much
easier, which is why we want to use Gaussian elimination to solve problems.

In general, the procedure goes:

1. Take the focused row’s pivot (we’ll call this number p). If everything
underneath the pivot is 0, move to the next row and restart this process.

2. If there are nonzero elements in the column beneath the row (we’ll call
this number a), multiply the current row by a

p
and subtract it from a’s

row. This number a
p
is called a multiplier.

11

3. Continue until all of the rows beneath the focused row contain a zero
in the column corresponding to the focused row’s pivot. Once done,
restart the process with the next row.

Reduced row echelon form would be normalizing each row to make the
pivot equal to 1. In the case of the example above,

1 3 1

∣∣∣∣ 9

0 1 1

∣∣∣∣ 4

0 0 1

∣∣∣∣ 0


Gauss-Jordan elimination takes this one step further, and “backsubsti-

tutes” ahead of time:
1 3 1

∣∣∣∣ 9

0 1 1

∣∣∣∣ 4

0 0 1

∣∣∣∣ 0


r2−r3−→


1 3 1

∣∣∣∣ 9

0 1 0

∣∣∣∣ 4

0 0 1

∣∣∣∣ 0



r1−r3−→


1 3 0

∣∣∣∣ 9

0 1 0

∣∣∣∣ 4

0 0 1

∣∣∣∣ 0


r1−r3−→


1 0 0

∣∣∣∣ −3
0 1 0

∣∣∣∣ 4

0 0 1

∣∣∣∣ 0


Note that Gaussian elimination changes the column space of A, but not

its null space. We can therefore find the basis of N(A) through Gaussian
elimination.

4.2.1 Where it fails

What happens if a column doesn’t have a pivot, or the number that is sup-
posed to be the pivot (if we follow the diagonal pattern) is zero? Notice that
if this is the case, then the multiplier a

p
will be undefined, and the procedure

breaks.

12

There are one of two cases.
Case 1: The pivot exists, but the matrix doesn’t follow echelon

form
We may end up in a case like

1 −1 2

∣∣∣∣ 1

0 0 1

∣∣∣∣ 1

0 −4 8

∣∣∣∣ 0


All of the columns technically have pivots, but the rows are not in the nice
row-echelon form that we’d like to be in to perform backsubstitution. In this
case, we can simply permute the matrix’s rows (covered in section 4.2.2).

Case 2: The pivot doesn’t exist
If we end up with a row of all zeroes, and the column in question has all

zeroes below it, then we’ve reached a block. We can’t simply permute any of
the rows, because we won’t get anywhere that way. In this case, we simply
don’t have a pivot for that column, and A is rank-deficient.

4.2.2 Permutation

Permutation matrices have exactly 1 entry (of magnitude 1) in each row and
column. For example,

P =

1 0 0
0 0 1
0 1 0


The effect of multiplying P by some matrix A is that we end up with a
permutation of the rows or the columns (depending on if we left-multiply or
right-multiply).1 0 0

0 0 1
0 1 0

a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

a11 a12 a13
a31 a32 a33
a21 a22 a23


a11 a12 a13
a21 a22 a23
a31 a32 a33

1 0 0
0 0 1
0 1 0

 =

a11 a13 a12
a21 a23 a22
a31 a33 a32


13

The inverse of a permutation matrix is its transpose P T (we will discover
why in section 5).

4.2.3 Null Space Basis

Suppose we have a rectangular system

A =

1 2 3 1
1 4 5 −3
1 6 7 −7


This matrix is “wide,” which means that all of its columns cannot be pivot
columns. We can perform Gaussian elimination, which yields 1 2 3 1

0 2 2 −4
0 0 0 0


We have a rank of 2, which means that N(A) has dimensions of 4− 2 = 2.

We call the columns without pivots in them “free columns,” and the
variables in the input the columns correspond to are the degrees of freedom
of the system. We can choose any value for these free variables and backsolve
for the pivot variables, which will provide a basis for our null space. To
demonstrate this, let us call the portion of the matrix containing only the
pivot variables Ur:

Ur =

[
1 2
0 2

]
Meanwhile, we will place the non-zero rows of the free columns in another
matrix:

F =

[
3 1
2 −4

]
Given Ur and F , the generic form of a post-elimination matrix is: Ur

r×r
F

r×(n−r)

0
(m−r)×r

0
(m−r)×(n−r)


Creating a system: [

Ur F
0 0

] [
p
f

]
= 0

14

which then turns into [
Urp+ F f

0

]
= 0

We must therefore solve the system

Urp = −F f

Recall that f represents our free variables ; we can choose anything for f and
determine a unique p, which leads us to a nullspace vector[

p
f

]
In addition, we can take linear combinations of any vectors in the nullspace,
the result of which will also be in the nullspace. It is therefore easy for us
to choose basis vectors for f , and then reconstruct the rest of the nullspace
from linear combinations of them — commonly, we tend to choose the unit
basis vectors i, j. Applying this to our example system, we end up with:[

1 2
0 2

] [
p11 p12
p21 p22

]
= −

[
3 1
2 −4

] [
1 0
0 1

]
After solving for p11, p12, p21, p22, we can construct the basis of our nullspace:

c1


p11
p21
1
0

+ c2


p12
p22
0
1


which, in the context of the example, happens to be

c1


−1
−1
1
0

+ c2


−5
2
0
1


If we had performed Gauss-Jordan elimination on the original matrix instead,
and ended up with a matrix of the form[

I F
0 0

]
15

then the basis of our null space would be the columns of the matrix[
−F
I

]
with appropriate dimensions for I and F .

4.3 Inverses

If we think about A as applying some operation on a vector x, its inverse
A−1 is the operation that “undoes” A.

A−1Ax = x

It follows that
AA−1 = I

Inverses only exist for full-rank and square matrices.
Given a system

Ax = b

it is conceivable that we can multiply both sides on the left (“leftiply”) by
A−1:

A−1Ax = x = A−1b

The inverse of a matrix product is

(AB)−1 = B−1A−1

We can envision this in terms of the steps needed to “undo” the operation
AB; because we applied A last, we must undo it first, and then undo B to
return to our original vector. This result also implies that a matrix’s product
with its inverse is commutative:

(A−1A)−1 = I−1 = I = AA−1

Matrix inverse are unique for each A, provided that it does have one. This
also implies that the solution x = A−1b itself is unique — therein lies another
condition for the existence and uniqueness of solutions to Ax = b:

∃! x | Ax = b←→ ∃ A−1

16

Only square matrices can have matrix inverses. However, for “tall” and
“wide” matrices with full column rank and full row rank respectively, we can
define what are known as left and right inverses.

A−1
left = (ATA)−1AT

A−1
right = AT (AAT)−1

Note that these only apply when A is either full row rank or full column
rank. In addition, we cannot multiply a rank deficient A with either a left or
a right inverse, as this result depends on the idea that either ATA or AAT

will be square and invertible (depending on the nature of the independence
of the matrix).

In general, computing matrix inverses is computationally difficult, which
is why we don’t want to explicitly compute the inverse itself. We instead
interpret “find the result of A−1b” instead as “solve the system Ax = b for
x.” How we do this easily without solving for the inverse will be covered in
the following section (4.4).

4.4 LU Factorization

LU factorization stands for “lower-upper triangular factorization.” Just like
the name suggests, we take a matrix A and factorize it into L and U , which
are lower and upper triangular matrices, respectively. It turns out that per-
forming Gaussian elimination and “keeping a record” of the steps we’ve done
is exactly the same as factorizing A = LU .

What do we mean by “keeping a record”? If we take our example matrix
from an earlier section, 1 3 1

1 1 −1
3 11 6


We will perform Gaussian elimination and bookkeep our steps. 1 3 1

1 1 −1
3 11 6

 r2−r1,r3−3r1−→

 1 3 1

0 −2 −2
0 2 3

 r3+r2−→

 1 3 1

0 −2 −2
0 0 1

 = U

If we were to express the rows of A by the rows of U , we would have to work

17

“backwards”:

A1 = U1

A2 − U1 = U2 → A2 = U2 + U1

A3 − 3U1 + 2U2 = U3 → A2 = U3 − 2U2 + 3U1

We end up with a vaguely echelon-like system of equations

A1 = U1

A2 = U1 + U2

A3 = 3U1 − 2U2 + U3

which is equivalent to sayingA1

A2

A3

 =

1 0 0
1 1 0
3 −2 1

U1

U2

U3


However, remember that each Ai and Ui are essentially row vectors — they
represent the rows of their parent matrix. So if we expand this representation,
we see

A =

1 0 0
1 1 0
3 −2 1

1 3 1
0 −2 −2
0 0 1


which is an LU factorization!

L =

1 0 0
1 1 0
3 −2 1


U =

1 3 1
0 −2 −2
0 0 1


The process works the same in general for all matrices, regardless of shape.

If we end up with a matrix in which the pivots are not in the “correct”
order (i.e., not strictly down the diagonals), we attach a permutation matrix
P :

PA = LU

and then we can perform elimination like usual. Permutation matrices are
easy to invert, as it turns out, so it doesn’t change the way in which we can
apply LU decomposition.

18

4.4.1 Solving with LU factorization

Suppose we have a system that we want to solve

Ax = b

As per our earlier discussion about matrix inverses, we could find the solution
to this system by taking A−1 — however, this is computationally expensive,
so we want to avoid taking inverses if at all possible.

Instead, to solve this system, we can first decompose A (or really, PA)
into LU .

LUx = b

The solution now becomes

x = (LU)−1b = U−1L−1b

How are U−1 and L−1 any better to find?
The trick lies in that we aren’t actually going to find the inverses them-

selves — we will instead take the problem piece by piece.
Let’s define a vector

y = L−1b

so that
x = U−1y

We’ve now decomposed our system into two separate steps. Recall what we
said earlier about the significance of matrix inverses:

y = L−1b⇐⇒ Solve Ly = b for y

The structure of L makes this much easier to do — we can “forward substi-
tute” for the values of y, because of its lower-triangular echelon structure.

Once we have solved for y, we move on to step 2:

x = U−1y⇐⇒ Solve Ux = y for x

Once again, the echelon structure of U enables us to “back-substitute” for x
and therefore find the solution to the initial system, Ax = b.

Note that if we did have some P prepended to A in our LU factoriza-
tion, we need to keep track of the rows that we exchanged and permute x
accordingly.

19

5 Orthogonality

5.1 Transposes

Transposing a column vector will turn it into a row vector, and vice versa:

aT =


a1
a2
...
am


T

=
[
a1 a2 · · · am

]
Transposing a matrix consists of swapping its rows and columns.

∣∣∣∣ ∣∣∣∣ · · ·
∣∣∣∣

a1 a2 · · · an∣∣∣∣ ∣∣∣∣ · · ·
∣∣∣∣


T

m×n

=


— aT

1 —
— aT

2 —
...

...
...

— aT
m —


n×m

If A = AT , then we say that A is symmetric. In addition,

(AB)T = BTAT

The intuition behind a transpose is essentially moving an operator from right
to left inside a dot product (expanded upon in the next section).

xT [Ay] = [xTA]y = [Ax]Ty = Ax · y

5.2 Vector Properties and Dot Products

The dot product (also called the inner product) of two vectors x,y ∈ Rn is
defined as the following:

x · y = xTy

Note that x and y must be of the same dimension for the statement above
to make any sense. xTy yields a 1 × 1 matrix, also known as a scalar, by
definition, and it can be computed as the sum of pairwise products:

x1

x2
...
xn

 [
y1 y2 · · · yn

]
= x1y1 + x2y2 + · · ·+ xnyn

20

The length of a dot product is computed via some norm (most commonly,
this is the Euclidean norm, stated below):

||x|| =
√

x2
1 + x2

2 + · · ·+ x2
n

The dot product of two vectors x and y can also give us information about
the vectors themselves:

xTy = ||x|| ||y|| cos θ

where θ is the angle between the two vectors. It then follows that if x and
y are orthogonal, then their dot product will be 0, and if they are parallel,
then their dot product will just be the product of their lengths.

5.3 Orthonormal Bases

An orthonormal basis is a set of basis vectors Q = {q1,q2, · · · ,qn} such that:

1. Each ||qi|| = 1

2. qi · qj = 1 if i = j, else qi · qj = 0

The second statement is essentially a formal statement that each vector must
be orthogonal to every other vector in the basis set.

Orthogonal bases are nicer than any arbirary set of basis vectors because
they uphold these two properties — it makes it easier to compute certain
properties. For example, define a vector b ∈ span Q. Therefore,

b = c1q1 + c2q2 + · · ·+ cnqn

It becomes really easy to find each ci — if we just take the dot product of b
with any given basis vector qi, the components and coefficients of all of the
other basis vectors simply go away:

qT
i b = c1q

T
i q1 + · · ·+ ciq

T
i qi + · · ·+ cnq

T
i qn = ciq

T
i qi = ci

Furthermore, given that we’ve defined b in an orthogonal basis, we can easily
find its length:

||b||2 = c21 + c22 + · · ·+ c2n

21

If we put the orthonormal basis vectors into a matrix Q,

Q =


∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣
q1 q2 · · · qn∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣


then we end up with a matrix with some convenient properties. Namely,

QTQ = I

In addition, the linear map Q preserves the length of any vector it is applied
to. When Q is square, it is called an orthogonal matrix (or unitary matrix),
and we can say that Q−1 = QT (we can’t say this if Q isn’t square —
non-square matrices don’t have inverses!). In particular, the permutation
matrices P are special kinds of orthonormal matrices.

5.4 Orthogonal Subspaces and Complements

Two subspaces S1, S2 ⊂ V are called orthogonal to each other if all vectors
in S1 are orthogonal to every vector in S2.

S1 ⊥ S2 ←→ ∀x ∈ S1, ∀y ∈ S2, xTy = 0

For some subspace S ⊂ V , its orthogonal complement S⊥ is the set of every
vector in V that is orthogonal to every vector in S.

S⊥ = {x | ∀y ∈ S, xTy = 0}

In particular, the dimension of S and the dimension of S⊥ must add up to
the dimension of V .

Since vector spaces have bases, to confirm that two spaces are orthogonal,
we only need to take care of its basis vectors (as linear combinations of
orthogonal vectors will also be orthogonal). The union of the set of bases of
S and S⊥ should be the basis for V .

5.4.1 Four Fundamental Subspaces

Consider a matrix A. We covered the four fundamental subspaces C(A),
C(AT), N(A), and N(AT) in section 2.

22

First, we’ll consider C(A). C(A)T must be the set of all vectors u such
that uT (Ax) = 0 for all vectors x ∈ Rn.

C(A)⊥ = {u | uTAx = 0} = {u | ATu = 0}

The latter half of the above expression indicates that the left nullspace,
N(AT), is the orthogonal complement of C(A). We can repeat this construc-
tion with C(AT) — we will see that its orthogonal complement is N(A).

5.5 Orthogonal Projection

Given a vector b ∈ Rm, we can “split” it into its components along orthogonal
complement subspaces S and S⊥, so that

b = p+ e, p ∈ S, e ∈ S⊥

For example, in a 2× 2 case,

SS⊥ b

p

e

23

We will call the transformation from b to p the projection matrix P (not to
be confused with the permutation matrix), so that

p = Pb

e = b− Pb = (I − P)b

As it turns out, given some projection operator P onto a subspace S, the
projection operator onto the orthogonal complement S⊥ is just I−P . In gen-
eral, the orthogonal projection p onto the subspace S is the closest member
of S to b.

In addition, projection matrices have two important properties:

1. P T = P

2. P 2 = P (or any P n = P)

If A is full column rank, we are interested in the subspace C(A) (and its
orthogonal complement, N(AT)), especially if we want to solve something
like Ax = b when b /∈ C(A).

Suppose we project b into C(A), giving us a resulting projection p. p is,
by definition, in C(A), which means we can denote it as some

p = Ax∗

for x∗ ∈ Rn. Therefore,

b = Ax∗ + e −→ e = b− Ax∗

We also know that e ∈ C(A)⊥ = N(AT). Therefore,

ATe = AT (b− Ax∗) = 0

Through distribution, we see that

ATAx∗ = ATb

The above system is known as the normal equations. Furthermore,

x∗ = (ATA)−1ATb

and
Ax∗ = Pb = A(ATA)−1ATb

24

Thus, the projection matrix P onto the column space C(A) is

PC(A) = A(ATA)−1AT

Note that if A is invertible (square, full rank), then P = I, and the projection
matrix onto the orthogonal complement is 0 (if C(A) covers the whole space,
there’s no more space for an orthogonal complement).

For a “wide” matrix A that is full row rank, we can undergo the same
process and come to the conclusion

PC(AT) = AT (AAT)−1A

5.5.1 Gram-Schmidt Process

The Gram-Schmidt Process generates an orthogonal basis q1,q2, · · · ,qn out
of a set of linearly independent vectors a1, a2, · · · , an by utilizing projection.

We start with one of the vectors in our original set, say, a1. We divide it
by its magnitude to normalize it:

q1 =
a1

||a1||

From the next vector, we subtract the component of the vector in the direction
a1 (or q1) and normalize it once again to produce q2.

q2 =
a2 − q1(q1 · a2)

||a2 − q1(q1 · a2)||

Note that the numerator of the above is the same as taking the projection
onto the orthogonal complement of q1:

q2 =
(I − q1q

T
1)a2

||(I − q1qT
1)a2||

=
a2 − q1q

T
1 a2

||a2 − q1qT
1 a2||

The process repeats, but for each successive vector ai, we subtract the i− 1
orthogonal components that we’ve already established from it.

q3 =
(I − q1q

T
1 − q2q

T
2)a3

||′′||
=

a3 − q1q
T
1 a3 − q2q

T
2 a3

||′′||

and so on and so forth.

25

5.5.2 QR Factorization

The Gram-Schmidt process can be thought of as a matrix factorization. Like
LU decomposition, we also work through the process “backwards” to find
the QR decomposition.

First, let’s name the denominator of each successive basis vector qi as
some rii. For example,

r11 = ||a1||
r22 = ||a2 − q1q

T
1 a2||

r33 = ||a3 − q1q
T
1 a3 − q2q

T
2 a3||

and so on and so forth, so we can express

q1 =
a1

r11

q2 =
a2 − q1q

T
1 a2

r22

q3 =
a3 − q1q

T
1 a3 − q2q

T
2 a3

r33
...

Furthermore, qT
1 a2, q

T
1 a3, q

T
2 a3, etc., are all numbers (results of dot prod-

ucts). We’ll define
rij = qiaj

so that we are left with

q1 =
a1

r11

q2 =
a2 − r12q1

r22

q3 =
a3 − r13q1 − r23q2

r33
...

26

We can do some rearranging, and find that

a1 = r11q1

a2 = r12q1 + r22q2

a3 = r13q1 + r23q2 + r33q3

...

We see an echelon-like structure emerging once again! In matrix notation:
∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣
a1 a2 · · · an∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣

 =


∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣
q1 q2 · · · qn∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣



r11 r12 r13 · · ·

r22 r23 · · ·
r33 · · ·

. . .


A

m×n
= Q

m×n
R
n×n

6 Singular Value Decomposition

The (full) singular value decomposition of a matrix A is its factorization into

A
m×n

= U
m×m

Σ
m×n

V T

n×n

where U and V are orthogonal matrices and Σ is a diagonal matrix, contain-
ing what are called singular values. In expanded form,

A
m×n

=


∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣
u1 u2 · · · um∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣





σ1

σ2

. . .

σr

0
. . .




— vT

1 —
— vT

2 —
...

— vT
n —



where r is the rank of A. By convention, the σis are arranged in descending
order:

σ1 ≥ σ2 ≥ · · · ≥ σr ≥ σr+1 = 0

27

The uis are referred to as the left singular vectors, while the vis are referred
to as the right singular vectors. Note that A can also be written as

A =
r∑

i=0

σiuiv
T
i

We are effectively summing r independent, rank-1 matrices and scaling them
by σi. σi can thus be intuited as the relative contribution of each rank-1
component of A. Conversely, the left and right singular vectors corresponding
to a σi of 0 does not contribute to A. We can therefore choose to cut them
out — this is known as the compact SVD.

A
m×n

= Û
m×r

Σ̂
r×r

V̂ T

r×n

= A
m×n

=


∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣
u1 u2 · · · ur∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣



σ1

σ2

. . .

σr



— vT

1 —
— vT

2 —
...

— vT
r —


The compact SVD and the full SVD are equivalent — each have their nota-
tional advantages. Importantly, every matrix has an SVD. Geometrically, the
SVD has the effect of stretching some unit ball into an ellipsoid, as displayed
in the diagram below:

28

6.1 Properties

From the SVD, we have another definition for rank — the rank of A is the
number of non-zero singular values it has. Furthermore, given that the σis
are arranged in descending order (with the σi = 0s at the end),

1. u1,u2, · · · ,ur are a basis for C(A).

2. ur+1, · · · ,um are a basis for N(AT).

3. v1,v2, · · · ,vr are a basis for C(AT).

4. vr+1, · · · ,vn are a basis for N(A).

We can write
Avi = σiui

for all i. For a nonzero σi, it is clear that A takes the orthonormal basis
vector of its input space vi and outputs a scalar multiple of an orthonormal
basis vector ui for its output space. If σi is 0, this means that vi is in the
null space of A.

6.2 Low-rank Approximation

By virtue of the singular values being ordered in descending order of mag-
nitude, this gives us information about the most “relevant” u and v vector
pairs that contribute to the composition of A. We introduce something called
the Truncated SVD (TSVD), which cuts off some r − k singular values to
approximate A with a rank k matrix.

Why would we want to reduce the rank of a matrix? Matrices with higher
rank generally take up much more storage, and tends to be accompanied with
noise. Cutting out the singular values less than some ϵ will effectively remove
this noise, giving us a nicer matrix to work with.

As it turns out, the TSVD is the best rank-k approximation of a given
matrix A, as stated by the Eckart-Young theorem.

6.3 Moore-Penrose Pseudoinverse

Any arbitrary matrix A is not guaranteed to have an inverse. However, every
matrix may have a pseudoinverse A+ that approximates the behavior of an

29

inverse because it can be derived from the SVD. In particular, if

A = UΣV T

then
A+

n×m
= V

n×n
Σ+

n×m
UT

m×m

where

Σ+ =



1
σ1

1
σ2

. . .
1
σr

0
. . .


with dimensions transposed as necessary.

6.4 Operator Norm

The operator norm (also called the induced norm) of a matrix (and more
generally, any linear map) is defined as the following:

||A||2 = max
x∈Rn

||Ax||2
||x||2

Intuitively, ||A||2 refers to the maximum “stretchiness” of A (i.e., given an
input vector, the maximum factor by which its length can be stretched). As
it turns out, given the SVD of A,

||A||2 = σmax = σ1

6.5 Condition Number

The condition number for a square, invertible A is defined as

κ = ||A|| · ||A−1|| = σmax

σmin

κ describes the sensitivity of the linear system Ax = b to small perturbations.
When κ is close to 1 (i.e., its smallest and largest singular values are not too
different in magnitude), then the matrix is called well-conditioned — it is
not extremely sensitive to changes in input. When κ is extremely large,
the matrix is ill-conditioned, and it is sensitive to changes in inputs (it is
extremely close to singular).

30

7 Determinants

Numerically, the determinant of a matrix A is the alternating sum of the
product of its diagonal entries under row exchanges (permutations).

detA =
∑

(product of diagonal entries)(−1)n

where n is the number of row swaps performed. An odd number of row swaps
will make the term negative, and an even number of row swaps will make it
positive. Furthermore, a singular matrix will end up having a determinant
of 0.

However, this view of the determinant (and subsequent computation) is
not that satisfying — why is the determinant defined this way? Furthermore,
computing a determinant in this fashion will take on the order of O(n!) time,
where n is the number of rows in A, which is extremely inefficient.

7.1 Geometric Interpretation

The determinant of a matrix (and more generally, a given map) is a number
that quantifies how a volume in the input space Rm is changed/scaled after
a map has been applied to it. In the case of matrices, because they are linear
maps, the determinant is the volume of the hyper-parallelepiped defined by
the basis of the map’s column space. For example, if we start with the
canonical basis vectors:

=⇒
A

When we applied the linear map A, we can see that the same area got shifted
or skewed in some kind of way. The factor by which the area has changed is
detA.

7.2 Properties

Determinants can be built up from ground properties in a way that is more
useful than its definition as the sum of permutations.

31

Property 1

det I
m×m

= 1

Property 2

The determinant switches signs whenever we swap any 2 columns.

Property 3

The determinant is linear in any single column. This has two consequences:

1. Multiplying one column by some constant α scales the entire determi-
nant by α.

2. Adding some vector b to exactly one column of A generates another
term:

det


∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣
a1 a2 + b · · · an∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣

 = detA+ det


∣∣∣∣ ∣∣∣∣ · · · ∣∣∣∣
a1 b · · · an∣∣∣∣ ∣∣∣∣ · · · ∣∣∣∣


Property 4

The determinant of A is 0 if 2 columns are equal.
We can prove this from property (2): if we swap the 2 equal columns,

the determinant must be negated — however, the matrix has not materially
changed at all. Therefore,

detA = − detA

The only number that fulfills the above criteria is 0, so detA = 0.

Property 5

Column (elimination) operations do not change the determinant.

det


∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣
a1 a2 · · · an∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣

 = det


∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣
a1 a2 − 4a1 · · · an∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣


32

for example. This can be proven from properties (3) and (4) — we can sep-
arate the post-column operation matrix into two determinants, by linearity.

det


∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣
a1 a2 − 4a1 · · · an∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣

 = det


∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣
a1 a2 · · · an∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣

−4 det

∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣
a1 a1 · · · an∣∣∣∣ ∣∣∣∣ · · ·

∣∣∣∣


However, the second determinant must be equal to 0, because it has 2 iden-
tical columns.

Property 6

det(αA) = αm detA

This can also be proven by (3), linearity.

Property 7

det(AB) = detA · detB

Property 8

The determinant of an upper-triangular matrix U (or a lower-triangular ma-
trix L) is the product of its diagonal entries, or its pivots.

Property 9

For
AT = P−1LU

given n row swaps as a result of P ,

detA = (−1)n detUT

Property 10

detA = detAT

This property is especially consequential, as it indicates that all of the prop-
erties above that adhered to columns and column operations also apply to
row operations. Doing row and column operations to A do the same things
to its determinant.

33

Property 11

detA−1 = (detA)−1 =
1

detA
assuming that A is invertible in the first place. This gives us yet another
indication that a singular matrix (i.e., a matrix that does not have an inverse)
has a determinant of 0.

Property 12

detQ = ±1
Recall that Q is an orthogonal matrix, which means that it merely represents
a rotation, and not any sort of scaling. Therefore, from a geometric point of
view, it makes sense that the magnitude of its determinant is just 1. The
± accounts for “flips” in rotations, as Q may represent either a proper or
improper rotation.

Property 13

The determinant is invariant under a coordinate transform. Put differently,

det(B−1AB) = detA

Even further, given the SVD of A:

A = UΣV T

the determinant of A is ± the product of its singular values (and the product
of its eigenvalues, which will be covered in the next section).

8 Eigenvalues and Eigenvectors

An eigenvector-eigenvalue pair is one such pair λ ∈ R,x ∈ Rn with respect
to a square matrix A such that

Ax = λx

(in addition, x ̸= 0). A acts like a scalar when applied to x — this is useful
because multiplication via scalar is a much easier property to deal with than
multiplication by a matrix. In particular, given the following expression

Anx

34

if x is an eigenvalue of A, then we can just turn this into the simpler vector

λnx

The determinant of a matrix is equal to the product of its eigenvectors, and
its trace is the sum of its eigenvectors.

detA = λ1 · λ2 · · ·λn

trA = λ1 + λ2 + · · ·+ λn

8.1 Characteristic Polynomial

We can do some rearranging of the above definition.

Ax = λx

Ax− λIx = 0

(A− λI)x = 0

x cannot be the 0 vector, as stated in the definition. Therefore, the matrix
A− λI must have a null space of dimension ≥ 1, so it is singular.

det(A− λI) = 0

The above equation is known as the characteristic polynomial of A. The
roots of this polynomial with respect to λ are the eigenvalues of A.

Given the eigenvalues we find from our characteristic polynomial, we can
plug them back into A−λI. The basis of the null space of this matrix is our
corresponding eigenvector(s).

As a sidenote, our characteristic polynomial can have repeated roots — in
practice, this rarely happens, but when it does, we can get some interesting
behavior. In some cases, the nullity of A − λI can account for more than
1 basis vector, in which case, we have more than one independent eigenvec-
tor for the same eigenvalue. In other cases, we have a lack of independent
eigenvectors for its dimension n, and we call A degenerate.

8.2 Eigenvectors as a basis

If we have n independent eigenvectors for a n × n matrix A, we can use
the set of eigenvectors as a basis for our space Rn — that is, any arbitrary

35

vector y can be expressed as a linear combination of {x1, x2, · · · , xn}.
This is particularly useful because of the nice properties A exhibits with its
eigenvectors.

y = c1x1 + c2x2 + · · ·+ cnxn

Ay = A(c1x1 + c2x2 + · · ·+ cnxn)

= c1λ1x1 + c2λ2x2 + · · ·+ cnλnxn

By expressing y as a linear combination of eigenvectors, we’ve turned the
linear map A into an independent scaling of each of its components, rather
than something more complex.

8.3 Diagonalization

Given the eigenvectors and eigenvalues of our matrix A, we can express the
equation Ax = λx into one nice “package”:

A


∣∣∣∣ ∣∣∣∣ ∣∣∣∣
x1 x2 · · · xn∣∣∣∣ ∣∣∣∣ ∣∣∣∣

 =


λ1

λ2

. . .

λn



∣∣∣∣ ∣∣∣∣ ∣∣∣∣
x1 x2 · · · xn∣∣∣∣ ∣∣∣∣ ∣∣∣∣


AX = ΛX

= XΛ

X is our matrix of eigenvectors, and Λ is the diagonal matrix with eigenvalues
as its entries (note that we can commute X with Λ because it is a diagonal
matrix). If X is invertible (which is true when A is not degenerate), then we
can further express A as

A = XΛX−1

This is the diagonalization of A. This form gives us another way of looking
at the application of a linear map to a vector.

When we apply A to a vector y, we can write this as the following:

Ay = XΛ(X−1y)

Let’s take a look at the X−1y piece. This is equivalent to saying, “find a
solution c such that Xc = y.” This vector c is the vector of coefficients

36

that we place in front of each column of X in order to find y — that is, the
coefficients we need to write y in the basis of the eigenvectors of A.

y = Xc = c1x1 + c2x2 + · · · cnxn

Applying Λ to this c, then, has the effect of scaling each of these coefficients
ci by the corresponding λi.

ΛX−1y = Λc =


λ1c1
λ2c2
...

λncn


Multiplying the matrix X by this resultant vector then gives us a linear
combination of eigenvectors.

X


λ1c1
λ2c2
...

λncn

 = λ1c1x1 + λ2c2x2 + · · ·+ λncnxn

The diagonalization of a matrix is just a nice and concrete mathematical
expression for the idea of placing y into the basis of eigenvectors and scaling
each appropriately when A is applied to it.

8.4 Matrix Powers and the Exponential

The diagonalization lends itself nicely to the idea of taking matrix powers
and exponentiating by a matrix.

An = (XΛX−1)(XΛX−1) · · · (XΛX−1)

= XΛ(X−1X)Λ(X−1X) · · · (X−1X)ΛX−1

= XΛnX−1

Because Λ is a diagonal matrix, it is easy to exponentiate — we just expo-
nentiate each of the entries along its diagonals. Therefore,

An = X


λn
1

λn
2

. . .

λn
n

X−1

37

Note that, as n gets large, An has the tendency to be dominated by the
eigenvector-eigenvalue with the largest magnitude λi.

What does it mean to exponentiate by a matrix? What does eA do?
Recall the Taylor (Maclaurin) series expansion of ex:

ex = 1 + x+
x2

2!
+

x3

3!
+ · · ·

If we replace x with A (forgiving the notational abuse), we see that

eA = I + A+
A2

2!
+

A3

3!
+ · · ·

The diagonalization once again allows us to find a “better” computational
form of this expression.

eA = XX−1 +XΛX−1 +
1

2!
XΛ2X−1 +

1

3!
XΛ3X−1 + · · ·

If we factor X and X−1 out,

eA = X

(
I + Λ+

1

2!
Λ2 +

1

3!
Λ3 + · · ·

)
X−1

However, the parenthesized series in the middle is reducible to just placing
the exponentials of each of the eigenvectors in the diagonal of a matrix (seen
when we expand and add).

eA = X


eλ1

eλ2

. . .

eλn

X−1

This process is not just limited to the exponential eA — any function with a
Taylor series can be applied to the matrix following similar reasoning.

8.5 Matrix Similarity

Two matrices A and B are called “similar” (A ∼ B) if they share the same
eigenvalues, as they will therefore have the same determinant, trace, and
characteristic polynomial. Equivalently, A is similar to B if

B = PAP−1

38

for an arbitrary invertible matrix P . To see why, we write A as its diagonal-
ization:

B = PXΛX−1P−1 = (PX)Λ(PX)−1

B and A share the same Λ matrix, so they share the same eigenvalues. P is
essentially a “change-of-basis” matrix between A and B.

8.6 Companion Matrices

Given a monic polynomial

p(x) = c0 + c1x+ · · ·+ cn−1x
n−1 + xn

there exists a square matrix for which p(x) is its characteristic polynomial.
By construction, one such matrix is

C(p) =


0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2
...

...
. . .

...
...

0 0 · · · 1 −cn−1


C(p) is called the companion matrix of the polynomial p(x) — however,
as eigenvalues are invariant under elementary row (and column) operations,
any matrix reachable by performing such operations on C(p) has the same
eigenvalues. Furthermore, any matrix similar to C(p) yields the same roots
to p(x)

8.7 Degenerate Matrices

When A does not have n distinct eigenvectors that can form a basis of Rn, it
is called a degenerate matrix (or otherwise non-diagonalizable). In practice,
a given random matrix A is almost always diagonalizable — degenerate ma-
trices have to be designed specifically by tuning some parameter. It is more
common for a matrix to be “almost” defective, which tends to happen for
ill-conditioned matrices.

Matrices are defective when, for for some eigenvalue λ, its algebraic mul-
tiplicity µa in the characteristic polynomial p(λ) is greater than its geometric
multiplicity µg, the nullity of A − λI. In other words, A is defective when

39

some repeated eigenvalue is not associated with enough eigenvectors to pro-
duce a full basis for Rn. However, we can introduce another independent
vector to fill this gap — we’d wish for it to have some kind of connection to
our initial matrix A. This is the motivation behind Jordan vectors, otherwise
known as generalized eigenvectors.

8.7.1 Jordan Vectors

For a given repeated eigenvalue λk with algebraic multiplicity µa > µg, the
matrix

(A− λkI)

will not have a big enough nullspace to fill a proper basis for its ambient
space. Given that it has µg independent vectors, we could just choose vectors
independent from the rest of its eigen-basis to form a full basis, but this
is unsatisfying — we want our chosen additional vectors to be specific and
special to A in some way. Thus is the motivation for the concept of generalized
eigenvectors, otherwise known as Jordan vectors.

A vector x
(m)
i is a generalized eigenvector of rank m corresponding to

some λi iff
(A− λI)mx

(m)
i = 0

and
(A− λI)m−1x

(m)
i = x

(1)
i

Of course, x
(1)
i is just xi, the regular eigenvector corresponding to λi.

Now, we can generate generalized eigenvectors through something known
as a Jordan chain. If we need m generalized eigenvectors to fill the space, we
can find a set {x(1)

i , x
(2)
i , · · · , x

(m)
i } where

(A− λI)x
(2)
i = x

(1)
i

(A− λI)x
(3)
i = x

(2)
i

...

(A− λI)x
(m)
i = x

(m−1)
i

In general, we see the pattern

x
(j)
i = (A− λI)x

(j+1)
i = (A− λI)m−jx

(m)
i

40

A set of n linearly independent generalized eigenvectors forms a canonical
basis if it is constructed from a Jordan chain.

Generalized eigenvectors should behave almost the same as regular eigen-
vectors, with some modifications. For example, applying some arbitrary
function (with a taylor series) f(A) is not as simple as just looking at its
eigenvalues. However, a nice form exists:

f(A)x
(j)
i = f(λi)x

(j)
i + f ′(λi)x

(1)
i

For matrix powers Ak,

Akx
(j)
i = λk

i x
(j)
i + kλk−1

i x
(1)
i

This is the basis for multiplying some eλt by powers of t to get solutions to
work in linear systems of differential equations with defective matrices.

8.7.2 Jordan Blocks

If A is defective, it cannot be diagonalized into the form XΛX−1, where Λ is
a diagonal matrix. However, it can be factorized into some XJX−1, where J
is an almost diagonal matrix, in the Jordan Canonical form (in which it has
mostly diagonal entries with 1s directly above the diagonals). For example,
if I have a set of four independent (generalized or regular) eigenvectors, I can
place them in a matrix X:

X =


∣∣∣∣ ∣∣∣∣ ∣∣∣∣ ∣∣∣∣

x
(1)
1 x

(2)
1 x2 x3∣∣∣∣ ∣∣∣∣ ∣∣∣∣ ∣∣∣∣


When we take the product AX, we get the result

AX =


λ1x

(1)
1

λ1x
(2)
1 + x

(1)
1

λ2x2

λ3x3

 =


λ1 1 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

X

Multiplying X by A has the effect of multiplying X by an almost diagonal
matrix, contrasting with A in the non-defective case (in which case the matrix

41

is definitively diagonal). Blocks like[
λ1 1
0 λ1

]
are called Jordan blocks.

9 Special Matrix Structures

9.1 Markov Matrices

A (left) Markov matrix M is a non-negative square matrix whose columns
sum to 1. All such matrices have eigenvalues of magnitude less than or equal
to 1:

|λk| ≤ 1

Markov matrices are used to represent the transitions between states of a
Markov chain, given a vector of probabilities. When we apply M to a prob-
ability vector some n times, we begin to converge to a steady state when n
is sufficiently large, corresponding to the eigenvectors with λi = 1.

Mmi = 1 ·mi ⇐⇒ lim
n→∞

Mnx = mi

Markov matrices are used extensively when analyzing systems probabilistic
processes, as well as algorithms such as Google PageRank.

9.2 Real-Symmetric and Hermitian Matrices

A real-symmetric matrix is some A ∈ Rn×n such that

A = AT

Such a matrix has some nice properties. In particular,

1. The eigenvalues of A are real.

2. A will always be diagonalizable.

3. The eigenvectors of A are orthogonal (and therefore, we can choose an
orthonormal basis that functions as the set of eigenvectors of A)

42

The diagonalization of A can therefore be expressed as some

A = QΛQT

When we start discussing complex matrices A ∈ Cn×n, we must reformulate
our definitions of taking dot products.

For some x ∈ Cn, y ∈ Cn, the dot product as it’s defined (xTy) does not
give us the properties we want it to. For one, because of the complex entries
and subsequent issues with signs, xTy may not equal 0, even if x ⊥ y. A
better definition is the Hermitian adjoint x† (also notated xH), the conjugate
transpose

x† = xT

in which we take the complex conjugate of every entry in x and then transpose
it (the same goes for any matrix A). The reason works has to do with the
definition of the modulus of some z ∈ C being defined as

|z|2 = zz

In complex space, the dot product between two vectors is x†y. Note that the
real transpose is simply a special case of the Hermitian adjoint (put differ-
ently, the Hermitian adjoint is a generalization of the transpose. Anywhere
we’ve used the transpose for real matrices, we can just replace it with the
Hermitian adjoint in the general complex case).

A matrix is Hermitian if it is equal to its conjugate transpose.

A = A†

The generalization of the orthogonal matrix Q, similarly, is called a unitary
matrix that follows the criteria

Q−1 = Q†

9.3 Positive (Semi-) Definite Matrices

A symmetric positive definite (SPD) matrix A is one that satisfies:

1. A = BTB, where B is full-column rank (N(B) = {0})

2. The quadratic form xTAx > 0 ∀x ∈ Rn

43

3. All of its eigenvalues λk > 0

As it turns out, all three of these properties are equivalent (that is, if one
of them is true, then all of them are true). Note that all inequalities above
are “strictly greater than” statements. If we instead extend the definitions
to include 0, we get a positive semi-definite (PSD) matrix.

A PSD matrix satisfies

1. A = BTB

2. The quadratic form xTAx ≥ 0 ∀x ∈ Rn

3. All of its eigenvalues λk ≥ 0

9.3.1 Connection to the SVD

Given a matrix B, we can find its SVD:

B = UΣV T

If we take BTB, we see that

A = BTB = V ΣTUTUΣV T = V Σ2V T = QΛQ−1

The eigenvalues of A (which, remember, is positive semi-definite) are there-
fore the squares of the singular values of B.

ΛA = Σ2 =



σ2
1

σ2
2

. . .

σ2
r

0
. . .


For any arbitrary matrix A, it is possible to find its singular value σk by
finding the square root of the corresponding eigenvalue of ATA (

√
λk).

44

9.4 The Jacobian Matrix

Given some multivariable vector-valued function F(x) : Rn 7→ Rm, we define
the Jacobian matrix J as them×n matrix of all first-order partial derivatives
of F.

J =
[
∂F
∂x1

∂F
∂x2

· · · ∂F
∂xn

]
=


∂F1

∂x1

∂F1

∂x2
· · · ∂F1

∂xn
∂F2

∂x1

∂F2

∂x2
· · · ∂F2

∂xn
...

...
. . .

...
∂Fm

∂xm

∂F1

∂x2
· · · ∂Fm

∂xn


This is the generalization of the function that the derivative serves in single
variable calculus — we can linearize functions by using the Jacobian.

F(x+ δx) ≈ F(x) + J
∣∣
x
· (δx)

The gradient ∇F is the transpose of the Jacobian.

J = (∇F)T

10 Applications

10.1 Graphs

Suppose we have an unweighted, undirected graph, like the diagram below:

A
B

C

D

An adjacency matrix records connections between different vertices. We can
index a matrix with the names of the vertices, like so:

A =


AA AB AC AD
BA BB BC BD
CA CB CC CD
DA DB DC DD

 =


0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0


45

Note that a vertex isn’t considered connected to itself unless there is an
explicit singular loop-edge that does so. The adjacency matrix is symmetric,
which makes perfect sense — because edges aren’t directed, any edge from
some vertex i to a vertex j will also lead j back to i.

If we made the graph directed, we’d need to take into account this order-
ing:

A
B

C

D
AA AB AC AD
BA BB BC BD
CA CB CC CD
DA DB DC DD

 =


0 1 0 0
0 0 1 1
0 0 0 0
0 0 1 0


Here, there exists a path from A to B, but not vice versa, and so on.

When we exponentiate an adjacency matrix n times (that is, multiply
it with itself n times), the resulting entries contain the number of walks of
length n there are from each vertex to another. For example,

A2 =


0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0



0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

 =


1 0 1 1
0 3 1 1
1 1 2 1
1 1 1 1


There is thus 1 path of length 2 from A back to itself, 0 paths of length 2
from A to B, 1 path of length 1 from A to C, and 1 path of length 1 from A
to D. This same procedure applies for directed graphs as well.

10.2 Regression and Fitting

If we have an overdetermined system Ax = b, with n < m, r = n and
C(A) does not cover the full ambient space Rm, we cannot find a solution x

46

if b /∈ C(A). However, it is useful to find the “next best thing” — that is,
the vector x∗ that brings Ax∗ the closest to b. This is exactly a projection
problem, in that we are finding the projection of b onto C(A). As per section
5.5,

Ax∗ = A(ATA)−1ATb

It turns out that the above x∗ minimizes the quantity

||Ax− b||2

which is why it is called the least-squares approach.
One application of projecting b is least-squares linear regression. Given a

set of datapoints (x0, y0), (x1, y1), · · · , (xm, ym), we want to find a polynomial
(or, most commonly, a line) that goes fits these datapoints best. That is, we
want to find a polynomial

c0 + c1x+ c2x
2 + c3x

3 + · · ·+ cnx
n

(for an arbitrary degree d) that best fits our data. Given some degree n, we
can put our datapoints into the following matrix system

1 x0 · · · xn
0

1 x1 · · · xn
1

...
...

. . .
...

1 xm · · · xn
m



c0
c1
c2
...
cn

 =


y0
y1
...
ym


The matrix on the left is known as the Vandermonde matrix. Once we
project y onto the column space of the matrix containing the entries of the
powers of x, we can find our column vector of coefficients c that minimizes
the least-squares residuals of our fitted polynomial to the actual data.

If, instead, we had an underdetermined system with n > m, r = m,
then solutions for Ax = b always exist — we just have an infinite number
of solutions for every b. Thus, our goal is to “choose” one of these solutions
— often, we want to find the minimum-norm solution, which turns out to be
equal to

x∗ = AT (AAT)−1b

Note that
Ax∗ = AAT (AAT)−1b = b

which makes sense — Ax = b will always be solvable, because A is full row
rank.

47

10.2.1 Regularization

Regularization (more specifically, ridge regularization or Tikhonov regular-
ization) combines the two approaches outlined above, especially for rank-
deficient matrices, in which a solution either may not exist or, if it does,
has infinite solutions. In particular, it asks for a solution that minimizes the
function

T (x) := ||Ax− b||2 + λ||x||2

for λ > 0.

10.3 Statistical Interpretations

Linear algebra provides a nice interpretation of some statistical quantities
and processes. Given m samples x1, x2, · · · , xm, we can place them into a
vector in Rm:

x =


x1

x2
...
xm


We define the vector o as the m dimensional vector of ones.

o ∈ Rm, o =


1
1
...
1


10.3.1 Mean

The mean µ can be defined as

µ =
1

m
oTx

Furthermore,

m = oTo

µ =
oTx

oTo

48

10.3.2 Variance

Now, let some vector a be the pointwise subtraction of µ from each element
in x.

a = x− oµ

= x− ooTx

oTo

=

(
I − ooT

oTo

)
x

We now define the projection P = I − ooT

oT o
, which is the projection operator

onto the orthogonal complement of o. Therefore, the variance σ2 of x can
be defined as

σ2 =
1

m− 1
||Px||2 = 1

m− 1
xTPx

We divide by m − 1, rather than m, due to a concept known as Bessel’s
correction. One way to go about intuiting this is that we have already “used
up” one dimension of our full space in defining o — P , as the projection
operator onto the orthogonal complement of o, is an operator into m − 1
dimensions.

10.3.3 Covariance

Why are we defining things in this way? For one, it allows us to generalize to
higher-dimensional data. I can use the same projection operator P to define
something like the variance (now called the covariance matrix S2) to a matrix
of data X ∈ Rm×n (in which we have m samples, each with n features).

S2 =
1

m− 1
(PX)T (PX)

where each entry S2
ij is the covariance between two features, defined by the

ith and jth columns. Intuitively, the covariance is a measure of how two
features “move” together. If the covariance between two features is positive,
they “move” together, and if it is negative, they move opposite to each other.
If it is 0, that means that the two features are uncorrelated with each other.

Pearson’s correlation coefficient ρ between two variables can be formu-
lated in terms of the covariance:

ρ(x, y) =
Cov(x, y)√
Var(x)Var(y)

=
(Px)T (Py)

||Px|| ||Py||

49

10.3.4 Principal Component Analysis

Given the data
A = PX

we can find its (compact) SVD

A = ÛΣ̂V̂ T

We can write the rows of A in the basis of V̂ (effectively rotating the data,
but not modifying its lengths) by rightiplying it by V̂ . We call this new
matrix B.

B = AV = ÛΣ̂V̂ V̂ T = ÛΣ̂

This B contains the data points in the V̂ basis. We can then find the covari-
ance of B:

CovB =
1

m− 1
BTB =

1

m− 1
Σ̂2

which is a diagonal matrix:

CovB =


σ2
1

m−1
σ2
2

m−1
. . .

σ2
r

m−1


The measurements in the V̂ bases are uncorrelated, which makes it a nice
basis to use to quantify the relative “importance” of each feature in the
dataset. In addition, the direction of the biggest variation of the data is the
vector in V̂ that corresponds to the largest value on the diagonal of the Σ̂2,

and furthermore, the value that it corresponds with –
σ2
1

m−1
– is the variance

in that direction. This is the principal component of A.

10.4 Linear Recurrences

Given some linear recurrence that depends on more than one previous term
(for example, the Fibonacci sequence, or more generally, the Lucas sequences):

fn = fn−1 + fn−2

50

we may analyze the growth of this sequence by utilizing matrix powers. We
can place the above expression into matrix form:[

fn+1

fn

]
=

[
1 1
1 0

] [
fn
fn−1

]
=

[
1 1
1 0

]([
1 1
1 0

] [
fn−1

fn−2

])
= · · ·

Given some initial conditions, we see that[
fn+1

fn

]
=

[
1 1
1 0

]n [
f1
f0

]
For the Fibonacci sequence, [

1
1

]
Therefore, analyzing the growth of this sequence is akin to analyzing the
exponentiation of

F =

[
1 1
1 0

]
The characteristic equation of this matrix is

λ2 − λ− 1 = 0

and eigenvalues of this matrix are

λ1 =
1 +
√
5

2
, λ2 =

1−
√
5

2

Does λ1 look familiar? This is the golden ratio!
As per the properties of matrix exponentiation, as n grows large, the

behavior of F n is dominated by the largest magnitude eigenvalue, which, in
this case, is λ1 = φ.[

fn+1

fn

]
= F n

[
f1
f0

]
≈ λ1

[
fn
fn−1

]
= λn

1

[
f1
f0

]
We can check this result numerically — as we compute more and more Fi-
bonacci numbers, the ratio between successive Fibonacci numbers converges
to φ.

51

11 Optimization

11.1 Quadratic Programming

A quadratic function is a function of the form

f(x) = xTAx− 2bTx+ c

where b,x ∈ Rn and c ∈ R. If A is positive (semi-) definite, then f(x) is a
convex function (a bowl opening upwards). It therefore has some minimum
point. If A is strictly positive-definite, this minimum is unique.

Formally, f(x) is convex if the function is always less than or equal to a
line connecting any two points on the function.

Convex Not convex

Convex functions lend themselves nicely to minimization. For example, sup-
pose we have some problem where we wish to minimize

min
x
||Bx− c||2

We can examine ||Bx− c||2 further.

||Bx− c||2 = (Bx− c)T (Bx− c)

= xBTBx− 2cTBx+ cTc

52

This is a convex function! In particular,

A = BTB

b = BTc

c = cTc

||Bx− c||2 = xTAx− 2bTx+ c

= f(x)

Minimizing ||Bx− c||2 is equivalent to minimizing f(x). Furthermore, from
the normal equations with least-squares regression, we know that the mini-
mum x solves

BTBx = BTc

=⇒ Ax = b

So solving Ax = b for some positive definite matrix A is also equivalent to
minimizing the convex quadratic.

11.2 Gradient Descent

Another way to look at the QP problem is to consider the gradient of f(x)
and find where it is equal to 0 (as per multivariable calculus). If we express
the function

f(x) =
1

2
xTAx− bTx+ c

component-wise, with expanded dot products and find the derivative with
respect to each xk, we find that

∇f(x) = Ax− b

If we set this to 0, we are solving the equation

Ax− b = 0 =⇒ Ax = b

which is the same conclusion we arrived at when we exploited the fact that
A was positive-definite in the previous section.

Importantly, for any function f(x), ∇f(x0) indicates the direction of
greatest ascent at some point x0. d = −∇f(x0) indicates the direction of
greatest descent. In minimizing some function, then, if we always take a step

53

in the direction of greatest descent, we are sure to reach a minimum at some
point — this is the idea behind gradient descent. Most of the work goes
behind deciding how large of a step to take. If we take steps that are too
large, we run in these step sizesthe risk of “stepping over” the minimum and
being unable to find it. If we take steps that are too small, it will take our
algorithm forever to converge on a minimum. The differences that step size
can make is summarized in the image below (courtesy of Prof. Johnson):

11.2.1 Exact Line Minimization

One way to determine α is to have it depend dynamically upon the position
and gradient at a certain point, rather than having it be a fixed number.
One such way of going about this is exact line minimization, in which, given
the direction of the gradient d and a starting point x, searches along the
direction of the gradient until a point where we would no longer be going
“downhill” is found.

Formally, we would be finding a new position

x+ αd

and our goal is to minimize the function f over α to find the locally optimal
step size α⋆. In addition,

∇f
∣∣
x+α⋆d

⊥ d

as, if the gradient at the new position were not perpendicular to d, that
would mean that we could still step downhill in some sort of way in the d

54

direction. Therefore,

dT∇f
∣∣
x+α⋆d

= 0

dT (A(x+ α⋆d)− b) = 0

dT (Ax− b) + α⋆d
TAd = 0

α⋆ =
−dT∇f

∣∣
x

dTAd

Because A is positive-definite, the denominator is always strictly greater than
0, so we will never be dividing by 0. At every step, this α⋆ is the “optimal
step size.”

11.2.2 Fixed learning rate

If, instead of computing some α⋆ at every step, we decide on a fixed step size,
we decrease the amount of computation needed but we run a greater risk of
either converging too slow or diverging completely, as per the diagram. We
must therefore find a good learning rate α that is neither too large, nor too
small — it turns out that, for quadratic optimization, we can derive such an
α given the properties of A.

For a constant α and a direction of steepest descent

−∇f = b− Ax

on each step, we are setting our new position to be

xk+1 = xk + α(b− Axk)

Now, let’s consider the residual error r = b− Ax.

rk+1 = b− A(xk − αrk) = rk − αArk = (I − αA)rk

Every step, we are multiplying our residual by the matrix I − αA — this is
a matrix powers problem! If we want our residuals to converge to 0, then,
the eigenvalues of I −αA must be less than 1. Given that the eigenvalues of
A are some λk (positive, since we know that A is positive-definite), then the
eigenvalues of I − αA are

1− αλk

55

Therefore,

|1− αλk| < 1

−1 < 1− αλk < 1

−2 < −αλk < 0

0 <α <
2

λmax

In addition, we want the largest magnitude of |1 − αλk| to be as small as
possible, since that determines our rate of convergence. This is given at the
point

α =
2

λmax + λmin

and the biggest magnitude eigenvalue is

αλmax − 1 =
λmax − λmin

λmax + λmin

=
κ− 1

κ+ 1

The plot of stable eigenvalues is seen in the figure below (courtesy of Prof.
Johnson)

In the limit case of α being extremely close to 0, we are actually taking what
seem like infinitesimally small steps — akin to solving a differential equation.

11.2.3 Accelerated Gradient Descent

A perennial problem with gradient descent is the “zig-zagging” effect, where
we move up and down, sometimes in the direction that we just came from,

56

due to the local gradient. Furthermore, we may get stuck in a local minimum
that is not the true global minimum we want to find.

We may wish to introduce some sort of “memory” in choosing our step,
so that we are inclined to move away from our previous steps, rather than
bouncing back. This is the intuition behind accelerated gradient descent
(sometimes called “heavy ball algorithms”), which introduces a momentum
term to each step to weight our new point in a further-downhill direction.
This is summarized in the equation

xk+1 = xk − α∇f
∣∣
xk︸ ︷︷ ︸

steepest descent

+ β(xk − xk−1)︸ ︷︷ ︸
momentum

where β is some parameter ≥ 0 that determines the “importance” of our
momentum term.

To analyze this, we can look at the residuals:

rk+1 = b− A(xk + αrk + β(xk − xk−1))

= (I − αA)rk + β(rk − rk−1)[
rk+1

rk

]
=

[
(1 + β)I − αA −βI

I 0

] [
rk
rk−1

]
By analyzing the eigenvalues of the above 2m × 2m block matrix (which
is equivalent to analyzing each 2 × 2 matrix produced by plugging in the
eigenvalues of A), we find that the optimal parameters α and β are

α =

(
2√

λmax +
√
λmin

)2

β =

(√
λmax −

√
λmin√

λmax +
√
λmin

)2

with a largest magnitude eigenvalue of

√
κ− 1√
κ+ 1

This is roughly a quadratic speedup over gradient descent without a momen-
tum term.

57

11.3 Constraints

Recall the problem of unconstrained optimization: given some objective func-
tion f(x), we find some x⋆ that minimizes the value of f over its domain.

x⋆ = min
x∈Rn

f(x)

The necessary condition for optimality (though not sufficient) is that the
gradient of f at x⋆ must be zero:

∇f
∣∣
x⋆

= 0

Now, if there exist some boundary conditions or constraints that x⋆ must
fulfill (e.g. it must lie inside some particular subset of the domain), the prob-
lem becomes more complicated. There are two types of constraints: equal-
ity constraints (in which some vector-valued constraint function h(x) = 0)
and inequality constraints (in which some vector-valued constraint function
g(x) ⪯ 0). The set of points that fulfill the stated constraints is called the
feasible set.

11.3.1 Equality Constraints

Given a series of equality constraints hi(x) = 0 for i = 1, · · · , p, the necessary
condition for optimality is that the gradient of the objective function ∇f lies
in the span of the gradients of each of the constraints ∇hi.

∇f(x⋆) +

p∑
i=1

νi∇hi(x⋆) = 0

Recall that the gradient of the vector-valued formulation of our equality
constraints h(x) is the transpose of its Jacobian; therefore, an equivalent
way of phrasing these conditions is

∇f(x⋆) + JT ν⃗ = 0

ν1, · · · , νp are called the Lagrange Multipliers. Furthermore, we can define
the Lagrangian function

L(x, ν⃗) = f(x) + h(x)T ν⃗

58

Using the Lagrangian, we can package the necessary conditions nicely:

∇xL(x⋆, ν⃗⋆) = 0

h(x) = 0

A possible pitfall arises when the gradients of distinct equality conditions are
linearly dependent at x⋆. To address this, we just add a regularity condition
that the gradients of each of the active constraints are linearly independent,
known as the Linear Independence Constraint Qualification (LICQ).

11.3.2 Inequality Constraints

Given an objective function f(x) subject to inequality constraints g(x) ⪯ 0,
we conceive of inequality constraints to be some “wall” (the boundary of the
region fulfilling the inequality, or the feasible region). There are two cases:
active and inactive constraints.

Inactive constraints
If there exists some point strictly inside of the feasible region (i.e. not

on the “wall”) where ∇f = 0, we do not even need the inequality constraint
to be in place — we’ve found the minimum regardless of whether or not the
constraint exists. In this case, the constraint is considered inactive. Hence,
in this case, the corresponding multiplier λ = 0.

Active Constraints
If instead the constraint is active (and the optimal x⋆ lies on the bound-

ary of the constraint, and gi(x⋆) = 0), we know that the gradient of the
constraints must be pushing us outwards directly towards the infeasible re-
gion. In this case, the inequality constraints behave like equality constraints,
since we are constrained to lie on the boundary. Therefore, just like the
equality case, the gradient of the objective function f must lie in the span of
the gradients of the constraint functions ∇gi.

∇f +∇giλi = 0

11.3.3 KKT Conditions

The Karush-Kuhn-Tucker (KKT) conditions are a way of packaging the nec-
essary conditions for optimality using the Lagrangian function. They are
considered the generalization of the method of Lagrange Multipliers to multi-
dimensional equality constraints and inequality constraints.

59

More specifically, given an objective function f(x) subject to

h(x) = 0, g(x) ⪯ 0

we define the Lagrangian L such that

L(x, ν⃗, λ⃗) = f(x) + hT (x)ν⃗ + g(x)T λ⃗

The KKT conditions state the following:

∇xL
∣∣
x⋆

= 0

Primal Feasibility: g(x⋆) ⪯ 0

h(x⋆) = 0

Dual Feasibility: λ⃗⋆ ⪰ 0

Complementary Slackness: g(x⋆)
T λ⃗⋆ = 0

The complementary slackness condition ensures that the inequality con-
straints are either active (gi(x⋆) = 0) with λi ≥ 0, or inactive with λi = 0.

60

	Basics of Linear Equations
	Row Picture
	Column Picture
	Linearity

	Vector Spaces
	Definitions
	Column Space
	Null Space
	Row Space
	Left Null Space

	Linear Independence
	Definitions
	Vector Span

	Rank
	Rank-Nullity Theorem
	Cases

	Solving Linear Equations
	Existence and Uniqueness of Solutions
	Gaussian Elimination
	Where it fails
	Permutation
	Null Space Basis

	Inverses
	LU Factorization
	Solving with LU factorization

	Orthogonality
	Transposes
	Vector Properties and Dot Products
	Orthonormal Bases
	Orthogonal Subspaces and Complements
	Four Fundamental Subspaces

	Orthogonal Projection
	Gram-Schmidt Process
	QR Factorization

	Singular Value Decomposition
	Properties
	Low-rank Approximation
	Moore-Penrose Pseudoinverse
	Operator Norm
	Condition Number

	Determinants
	Geometric Interpretation
	Properties

	Eigenvalues and Eigenvectors
	Characteristic Polynomial
	Eigenvectors as a basis
	Diagonalization
	Matrix Powers and the Exponential
	Matrix Similarity
	Companion Matrices
	Degenerate Matrices
	Jordan Vectors
	Jordan Blocks

	Special Matrix Structures
	Markov Matrices
	Real-Symmetric and Hermitian Matrices
	Positive (Semi-) Definite Matrices
	Connection to the SVD

	The Jacobian Matrix

	Applications
	Graphs
	Regression and Fitting
	Regularization

	Statistical Interpretations
	Mean
	Variance
	Covariance
	Principal Component Analysis

	Linear Recurrences

	Optimization
	Quadratic Programming
	Gradient Descent
	Exact Line Minimization
	Fixed learning rate
	Accelerated Gradient Descent

	Constraints
	Equality Constraints
	Inequality Constraints
	KKT Conditions

